10-simplex

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Regular hendecaxennon
(10-simplex)
10-simplex t0.svg
Orthogonal projection
inside Petrie polygon
Type Regular 10-polytope
Family simplex
Schläfli symbol {3,3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
9-faces 11 9-simplex9-simplex t0.svg
8-faces 55 8-simplex8-simplex t0.svg
7-faces 165 7-simplex7-simplex t0.svg
6-faces 330 6-simplex6-simplex t0.svg
5-faces 462 5-simplex5-simplex t0.svg
4-faces 462 5-cell4-simplex t0.svg
Cells 330 tetrahedron3-simplex t0.svg
Faces 165 triangle2-simplex t0.svg
Edges 55
Vertices 11
Vertex figure 9-simplex
Petrie polygon hendecagon
Coxeter group A10 [3,3,3,3,3,3,3,3,3]
Dual Self-dual
Properties convex

In geometry, a 10-simplex is a self-dual regular 10-polytope. It has 11 vertices, 55 edges, 165 triangle faces, 330 tetrahedral cells, 462 5-cell 4-faces, 462 5-simplex 5-faces, 330 6-simplex 6-faces, 165 7-simplex 7-faces, 55 8-simplex 8-faces, and 11 9-simplex 9-faces. Its dihedral angle is cos−1(1/10), or approximately 84.26°.

It can also be called a hendecaxennon, or hendeca-10-tope, as an 11-facetted polytope in 10-dimensions. The name hendecaxennon is derived from hendeca for 11 facets in Greek and -xenn (variation of ennea for nine), having 9-dimensional facets, and -on.

Coordinates

The Cartesian coordinates of the vertices of an origin-centered regular 10-simplex having edge length 2 are:

\left(\sqrt{1/55},\ \sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ \sqrt{1/6},\ \sqrt{1/3},\ \pm1\right)
\left(\sqrt{1/55},\ \sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ \sqrt{1/6},\ -2\sqrt{1/3},\ 0\right)
\left(\sqrt{1/55},\ \sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ -\sqrt{3/2},\ 0,\ 0\right)
\left(\sqrt{1/55},\ \sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ -2\sqrt{2/5},\ 0,\ 0,\ 0\right)
\left(\sqrt{1/55},\ \sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ -\sqrt{5/3},\ 0,\ 0,\ 0,\ 0\right)
\left(\sqrt{1/55},\ \sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ -\sqrt{12/7},\ 0,\ 0,\ 0,\ 0,\ 0\right)
\left(\sqrt{1/55},\ \sqrt{1/45},\ 1/6,\ -\sqrt{7/4},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)
\left(\sqrt{1/55},\ \sqrt{1/45},\ -4/3,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)
\left(\sqrt{1/55},\ -3\sqrt{1/5},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)
\left(-\sqrt{20/11},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)

More simply, the vertices of the 10-simplex can be positioned in 11-space as permutations of (0,0,0,0,0,0,0,0,0,0,1). This construction is based on facets of the 11-orthoplex.

Images

orthographic projections
Ak Coxeter plane A10 A9 A8
Graph 10-simplex t0.svg 10-simplex t0 A9.svg 10-simplex t0 A8.svg
Dihedral symmetry [11] [10] [9]
Ak Coxeter plane A7 A6 A5
Graph 10-simplex t0 A7.svg 10-simplex t0 A6.svg 10-simplex t0 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 10-simplex t0 A4.svg 10-simplex t0 A3.svg 10-simplex t0 A2.svg
Dihedral symmetry [5] [4] [3]

Related polytopes

The 2-skeleton of the 10-simplex is topologically related to the 11-cell abstract regular polychoron which has the same 11 vertices, 55 edges, but only 1/3 the faces (55).

References

  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • Richard Klitzing, 10D uniform polytopes (polyxenna), x3o3o3o3o3o3o3o3o3o - ux

External links