Asparagine

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

L-Asparagine
Skeletal formula of L-asparagine
Ball-and-stick model of the L-asparagine molecule as a zwitterion
Names
IUPAC name
Asparagine
Other names
2-Amino-3-carbamoylpropanoic acid
Identifiers
70-47-3 YesY
ChEBI CHEBI:17196 YesY
ChEMBL ChEMBL58832 YesY
ChemSpider 6031 YesY
DrugBank DB03943 YesY
EC Number 200-735-9
4533
Jmol 3D model Interactive image
Interactive image
KEGG C00152 YesY
PubChem 236
UNII 7NG0A2TUHQ YesY
  • InChI=1S/C4H8N2O3/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H2,6,7)(H,8,9)/t2-/m0/s1 YesY
    Key: DCXYFEDJOCDNAF-REOHCLBHSA-N YesY
  • InChI=1/C4H8N2O3/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H2,6,7)(H,8,9)/t2-/m0/s1
    Key: DCXYFEDJOCDNAF-REOHCLBHBD
  • O=C(N)C[C@H](N)C(=O)O
  • C([C@@H](C(=O)O)N)C(=O)N
Properties
C4H8N2O3
Molar mass 132.12 g·mol−1
Appearance white crystals
Density 1.543 g/cm3
Melting point 234 °C (453 °F; 507 K)
Boiling point 438 °C (820 °F; 711 K)
2.94 g/100 mL
Solubility soluble in acids, bases, negligible in methanol, ethanol, ether, benzene
log P -3.82
Acidity (pKa) 2.02 (carboxyl), 8.80 (amino)[1]
Structure
orthorhomic
Thermochemistry
-789.4 kJ/mol
Vapor pressure {{{value}}}
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Thermodynamic
data
Phase behaviour
solid–liquid–gas
UV, IR, NMR, MS
YesY verify (what is YesYN ?)
Infobox references

Asparagine (abbreviated as Asn or N) encoded by the codons AAU and AAC.[2] is an ɑ-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated -+NH3 form under biological conditions), an α-carboxylic acid group (which is in the deprotonated –COO- form under biological conditions), and a side chain carboxamide, classifying it as a polar (at physiological pH), aliphatic amino acid. It is non-essential in humans, meaning the body can synthesize it. A reaction between asparagine and reducing sugars or other source of carbonyls produces acrylamide in food when heated to sufficient temperature. These products occur in baked goods such as French fries, potato chips, and toasted bread.

History

Asparagine was first isolated in 1806 in a crystalline form by French chemists Louis Nicolas Vauquelin and Pierre Jean Robiquet (then a young assistant) from asparagus juice,[3][4] in which it is abundant, hence the chosen name. It was the first amino acid to be isolated.

Three years later, in 1809, Pierre Jean Robiquet identified a substance from liquorice root with properties he qualified as very similar to those of asparagine, and that Plisson identified in 1828 as asparagine itself.[5]

Structural function in proteins

Since the asparagine side-chain can form hydrogen bond interactions with the peptide backbone, asparagine residues are often found near the beginning and the end of alpha-helices, and in turn motifs in beta sheets. Its role can be thought as "capping" the hydrogen bond interactions that would otherwise be satisfied by the polypeptide backbone. Glutamines, with an extra methylene group, have more conformational entropy and thus are less useful in this regard.

Asparagine also provides key sites for N-linked glycosylation, modification of the protein chain with the addition of carbohydrate chains. Typically, a carbohydrate tree can solely be added to an asparagine residue if the latter is flanked on the C side by X-serine or X-threonine, where X is any amino acid with the exception of proline.[6]

Sources

Dietary sources

Asparagine is not essential for humans, which means that it can be synthesized from central metabolic pathway intermediates and is not required in the diet.

Asparagus is a source of L-asparagine.

Asparagine is found in:

Biosynthesis

The precursor to asparagine is oxaloacetate. Oxaloacetate is converted to aspartate using a transaminase enzyme. The enzyme transfers the amino group from glutamate to oxaloacetate producing α-ketoglutarate and aspartate. The enzyme asparagine synthetase produces asparagine, AMP, glutamate, and pyrophosphate from aspartate, glutamine, and ATP. In the asparagine synthetase reaction, ATP is used to activate aspartate, forming β-aspartyl-AMP. Glutamine donates an ammonium group, which reacts with β-aspartyl-AMP to form asparagine and free AMP.

The biosynthesis of asparagine from oxaloacetate

Degradation

Asparagine usually enters the citric acid cycle in humans as malate.[citation needed] In bacteria, the degradation of asparagine leads to the production of oxaloacetate which is the molecule which combines with citrate in the citric acid cycle (Kreb's cycle). Asparagine is hydrolyzed to aspartate by asparaginase. Aspartate then undergoes transamination to form glutamate and oxaloacetate from alpha-ketogluterate.

Function

Asparagine is required for development and function of the brain.[7] It also plays an important role in the synthesis of ammonia.

The addition of N-acetylglucosamine to asparagine is performed by oligosaccharyltransferase enzymes in the endoplasmic reticulum.[8] This glycosylation is important both for protein structure[9] and protein function.[10]

Betaine structure

(S)-Asparagine (left) and (R)-asparagine (right) in zwitterionic form at neutral pH.

External links

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found..
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.