Biomonitoring

From Infogalactic: the planetary knowledge core
(Redirected from Body burden)
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

In analytical chemistry, biomonitoring is the measurement of the body burden[1] of toxic chemical compounds, elements, or their metabolites, in biological substances.[2][3] Often, these measurements are done in blood and urine.[4]

The two best established biomonitoring programs in representative samples of the general population are those of the United States and Germany, although population-based programs exist in a few other countries.[5] In 2001, the U.S. Centers for Disease Control and Prevention (CDC) began to publish its biennial National Report on Human Exposure to Environmental Chemicals, which reports a statistically representative sample of the U.S. population.[6] The Environmental Working Group has also conducted biomonitoring studies.[7]

Overview

Historically, public health regulations have been based on theoretical risk calculations according to known levels of chemical substances in air, water, soil, food, other consumer products and other sources of potential exposure. Human biomonitoring offers the opportunity to analyze the actual internal levels of bodily substances from all potential routes of exposure at one time, which may contribute to improving risk assessments.[8] Scientific advancements have made it possible to detect a greater number of chemical substances in smaller concentrations in the body, with some chemicals detectable at levels as low as parts per trillion.[9] A single biomonitoring measurement is only one snapshot in time and may not accurately reflect the level of exposure over longer periods.[10]

In 2006 the U.S. National Research Council published a report, Human Biomonitoring for Environmental Chemicals. The report recognized the value of biomonitoring for better understanding exposure to environmental chemicals, and included several findings and recommendations to improve the utility of biomonitoring data for health risk assessment.[11] In summary, the report called for more rigorous health-based criteria for selecting chemicals to include in biomonitoring studies; the development of tools and techniques to improve risk-based interpretation and communication of biomonitoring data; integration of biomonitoring into exposure assessment and epidemiological research; and exploration of bioethical issues around biomonitoring, including informed consent, confidentiality of results, and others.[12]

The issue of exposure to environmental chemicals has received attention as a result of televised reports by Bill Moyers for PBS and Anderson Cooper for CNN's "Planet in Peril" series.[13] The book Our Stolen Future, with a foreword by former Vice President Al Gore, also raised awareness by focusing on endocrine disruption.

Surveys

  • In the United States, the CDC first tested samples from the general population for lead and a few pesticides in 1976.[14] In the late 1990s, the National Health and Nutrition Examination Survey (NHANES) program had a major expansion.[14]
  • Some U.S. states have received federal support[15] and have established biomonitoring programs. In 2001, the CDC awarded planning grants to 33 states to assist in capacity building for expanding biomonitoring.[16] The California Environmental Contaminant Biomonitoring Program (CECBP), is administered by the California Department of Public Health, and was established by law in 2006.[17] Minnesota's Biomonitoring Pilot Program was established by law in 2007 and is run by the Minnesota Department of Health.[18]
  • The Environmental Working Group's (EWG) Human Toxome Project and the Canadian group Environmental Defence's Toxic Nation project have directed studies.[7][19]
  • In Germany, the German Environmental Survey (GerES) has been active since 1985,[4][20] and in 1992 the Human Biomonitoring Commission of the German Federal Environment Agency was established.[21]
  • In Canada, Statistics Canada administers the Canadian Health Measures Survey, which includes biomonitoring for environmental chemicals.[22] Health Canada administers a program called Mother-Infant Research on Environmental Chemicals, which focuses on 2,000 pregnant women and their infants.[23]

National Report on Human Exposure to Environmental Chemicals

The CDC's Division of Laboratory Sciences within the National Center for Environmental Health has developed a National Biomonitoring Program, and publishes the biennial National Report on Human Exposure to Environmental Chemicals. As the selection of chemicals is controversial, the CDC has identified influential criteria:[24]

  • Evidence of exposure in a U.S. population
  • The presence and significance of health effects after a given level of exposure
  • Desire to track public health initiatives to reduce exposure to a given agent
  • Existing method for accurately measuring biologically relevant concentrations of the chemical
  • Sufficient tissue specimens, in particular, blood and/or urine samples
  • Cost-effectiveness.

CDC has also established three criteria for removing chemicals from future editions of the National Report:

  • A new replacement chemical (i.e., a metabolite or other chemical) is more representative of exposure than the chemical currently measured, or
  • If after three survey periods, detection rates for all chemicals within a method-related group are less than 5 percent for all population subgroups (i.e., two sexes, three race/ethnicity groups, and the age groups used in the National Report), or
  • If after three survey periods, levels of chemicals within a method-related group are unchanged or declining in all demographic subgroups documented in the National Report.[25]

National Children's Study

In collaboration with the National Institute of Child Health and Development (NICHD), National Institute of Environmental Health Sciences and U.S. Environmental Protection Agency, the CDC's Environmental Health Laboratory has announced it will play a key role in the biomonitoring of the ongoing National Children's Study, which plans to follow 100,000 children across the United States from birth until age 21. The study was authorized as part of the Children's Health Act of 2000 and is the largest effort undertaken to address the effects of social, economic and environmental factors on a child's health.[26]

Methods and chemicals

Chemicals and their metabolites can be detected in a variety of biological substances such as blood, urine, hair, semen, breast milk, or saliva.[27] Breast milk is a favored matrix (substance) to measure lipophilic (fat-loving) persistent, bioaccumulative, and toxic (PBT) compounds during lactation; this exposure route is dominant for breastfeeding children.[28] A lipophilic compound might also be detected in blood, while a hydrophilic (water-loving) compound might be detected in urine. Analytical methods used by the CDC include isotope dilution mass spectrometry, inductively coupled plasma mass spectrometry, or graphite furnace atomic absorption spectrometry.[29]

Some of the detected chemicals include:

Interpretation

The presence of an environmental chemical in the body does not necessarily indicate harm.[30] The analytical chemistry of detecting chemicals has advanced more rapidly than the ability to interpret the potential health consequences.[31] Health risks are usually established from toxicity studies in laboratory animals and epidemiological evidence in humans. Lead is a well studied chemical with a CDC action level of concern, currently at 10 µg/dL, or 100 parts per billion, in blood; however, neurobehavioral impairment has been noted below this level.[32] Because this approach requires establishment of cause and effect in epidemiological studies and a thorough understanding of human dose response, data to support these types of action levels exist for only a few environmental chemicals. The concept of Biomonitoring Equivalents (BEs) has been developed as an alternative approach to aid in interpreting and communicating biomonitoring results in the context of potential risks to health.[33]

Surveys of human exposure to chemicals do not usually integrate the number of chemical compounds detected per person and the concentration of each compound. This leaves untested relevant exposure situations; e.g., whether individuals with low concentrations of some compounds have high concentrations of the other compounds. Analyses of the concentrations of a given compound usually show that most citizens have much lower concentrations than a certain minority. A study based on a representative sample of the population of Catalonia (Spain),[34] which integrated the number of compounds detected per person and the concentration of each compound, found that more than half of the population had concentrations in the top quartile of 1 or more of the 19 persistent toxic substances (PTS) (pesticides, PCBs) analyzed. Significant subgroups of the population accumulated PTS mixtures at high concentrations. For instance, 48% of women 60–74 years had concentrations of 6 or more PTS in the top quartile; half of the entire population had levels of 1 to 5 PTS above 500 ng/g, and less than 4% of citizens had all PTS in the lowest quartile. Thus, PTS concentrations appear low in most of the population only when each individual compound is looked at separately. It is not accurate to state that most of the population has low concentrations of PTS. The assessment of mixture effects must address the fact that most individuals are contaminated by PTS mixtures made of compounds at both low and high concentrations.

Biomonitoring equivalents

Scientists performing biomonitoring testing are able to detect and measure concentrations of natural and manmade chemicals in human blood and urine samples at parts-per-billion to parts-per-quadrillion levels. A 2006 U.S. National Research Council report found that while scientists were capable of detecting the chemicals at these levels, methods for interpreting and communicating what their presence meant regarding potential health risks to an individual or population were still lacking.[11] The report recommended that scientific research be done to improve the interpretation and communication of biomonitoring results through the use of existing risk assessments of specific chemicals.[11]

To address this situation, several groups recognized that exposure guidance values, such as reference dose and tolerable daily intake, could, with sufficient data, be translated into corresponding estimates of biomarker concentrations for use in the interpretation of biomonitoring data.[35][36] In 2007, the initial methodology for the systematic translation of exposure guidance values into corresponding screening values for biomonitoring data, dubbed Biomonitoring Equivalents, was published by scientists from Summit Toxicology.[36] Subsequently, an expert panel from government, industry and academia, convened to develop detailed guidelines for deriving and communicating these Biomonitoring Equivalents.[37]

Biomonitoring Equivalents can be used for evaluation of biomonitoring data in a risk assessment context. Comparing biomonitoring data for a chemical with its Biomonitoring Equivalent provides a means for assessing whether population exposures to chemicals are within or above the levels considered safe by regulatory agencies.[38] Biomonitoring Equivalents can thus assist scientists and risk managers in the prioritization of chemicals for follow-up or risk management activities.[36]

Since 2007, scientists have derived and published Biomonitoring Equivalents for more than 110 chemicals, including cadmium, benzene, chloroform, arsenic, toluene, methylene chloride, triclosan, dioxins, volatile organic compounds, and others.[39][40] Several have been developed through collaborations of scientists from the U.S. Environmental Protection Agency, CDC and Health Canada.[37] Researchers from the German Human Biomonitoring Commission[21] have also proposed a concept for deriving screening values similar to Biomonitoring Equivalents.[40]

Communication

The National Research Council's 2006 report emphasized that accurate communication of results is essential for the proper use of biomonitoring surveys, but at the same time noted "there is no accepted standard for good biomonitoring communications."[31] In 2007, the Boston University School of Public Health organized a panel on this topic.[41]

An expert panel on Biomonitoring Equivalents has published guidelines for communicating information to the general public and health care providers.[42]

Charles McKay of the Connecticut Poison Control Center is interviewed in a video titled "A Medical Doctor's Perspective on Biomonitoring", which is focused on helping the general public better understand biomonitoring.[43][44]

See also

References

  1. What is body burden?
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. 4.0 4.1 Lua error in package.lua at line 80: module 'strict' not found.
  5. Porta M, et al. Monitoring concentrations of persistent organic pollutants in the general population: the international experience. Environment International 2008; 34: 546–561.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. 7.0 7.1 Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. 11.0 11.1 11.2 Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. 14.0 14.1 Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. Lua error in package.lua at line 80: module 'strict' not found.[page needed]
  17. Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.
  20. Lua error in package.lua at line 80: module 'strict' not found.
  21. 21.0 21.1 Lua error in package.lua at line 80: module 'strict' not found.
  22. Lua error in package.lua at line 80: module 'strict' not found.
  23. Lua error in package.lua at line 80: module 'strict' not found.
  24. Lua error in package.lua at line 80: module 'strict' not found.
  25. Lua error in package.lua at line 80: module 'strict' not found.
  26. Lua error in package.lua at line 80: module 'strict' not found.
  27. Lua error in package.lua at line 80: module 'strict' not found.
  28. Lua error in package.lua at line 80: module 'strict' not found.
  29. Lua error in package.lua at line 80: module 'strict' not found.
  30. Lua error in package.lua at line 80: module 'strict' not found.
  31. 31.0 31.1 Lua error in package.lua at line 80: module 'strict' not found.
  32. Lead (Pb) Toxicity: What Are the U.S. Standards for Lead Levels? ATSDR.
  33. Lua error in package.lua at line 80: module 'strict' not found.
  34. Porta M, et al. Number of persistent organic pollutants detected at high concentrations in a general population. Environment International 2012; 44: 106-111.
  35. Lua error in package.lua at line 80: module 'strict' not found.
  36. 36.0 36.1 36.2 Lua error in package.lua at line 80: module 'strict' not found.
  37. 37.0 37.1 Lua error in package.lua at line 80: module 'strict' not found.
  38. Lua error in package.lua at line 80: module 'strict' not found.
  39. Lua error in package.lua at line 80: module 'strict' not found.
  40. 40.0 40.1 Lua error in package.lua at line 80: module 'strict' not found.
  41. Lua error in package.lua at line 80: module 'strict' not found.
  42. Lua error in package.lua at line 80: module 'strict' not found.
  43. Lua error in package.lua at line 80: module 'strict' not found.
  44. Lua error in package.lua at line 80: module 'strict' not found.

External links