Ceruletide

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Ceruletide
File:Ceruletide.png
Systematic (IUPAC) name
(3S)-3-{[(1S)-1-carbamoyl-2-phenylethyl]carbamoyl}-3-[(2S)-2-[(2S)-2-{2-[(3R)-2-[(2S)-2-[(2S)-2-[(2S)-4-carbamoyl-2-{[(2S)-5-oxopyrrolidin-2-yl]formamido}butanamido]-3-carboxypropanamido]-3-[4-(sulfooxy)phenyl]propanamido]-3-hydroxybutanamido]acetamido}-3-(1H-indol-3-yl)propanamido]-4-(methylsulfanyl)butanamido]propanoic acid
Clinical data
AHFS/Drugs.com International Drug Names
Identifiers
CAS Number 17650-98-5 YesY
ATC code V04CC04 (WHO)
PubChem CID: 16219178
DrugBank DB00403 N
ChemSpider 147304 N
UNII 888Y08971B N
KEGG D03442 N
ChEMBL CHEMBL1201355 N
Chemical data
Formula C58H73N13O21S2
Molecular mass 1352.40 g/mol
 NYesY (what is this?)  (verify)

Ceruletide (INN), also known as cerulein or caerulein, is a ten amino acid oligopeptide that stimulates smooth muscle and increases digestive secretions. Ceruletide is similar in action and composition to cholecystokinin. It stimulates gastric, biliary, and pancreatic secretion; and certain smooth muscle. It is used in paralytic ileus and as diagnostic aid in pancreatic malfunction. It is used to induce pancreatitis in experimental animal models.

File:Hyla caerula Korallen-Laubfrosch.jpg
The tree frog Litoria caerulae, formerly named Hyla caerulae.

Ceruletide was discovered and its structure elucidated in 1967 by Australian and Italian scientists from dried skins of the Australian green tree frog (Litoria caerulea, formerly Hyla caerulea). Its amino acid sequence is Pglu-Gln-Asp-Tyr[SO3H]-Thr-Gly-Trp-Met-Asp-Phe-NH2.[1][2]

Induction of pancreatitis

Ceruletide upregulates pancreatic acinar cell intercellular adhesion molecule-1 (ICAM-1) proteins through intracellular upregulation of NF-κB. Surface ICAM-1 in turn promotes neutrophil adhesion onto acinar cells enhancing pancreatic inflammation.[3] In addition to promoting the inflammatory cell reaction to acinar cells, ceruletide induces pancreatitis through dysregulation of digestive enzyme production and cytoplasmic vacuolization, leading to acinar cell death and pancreatic edema. Ceruletide also activates NADPH oxidase, a source of reactive oxygen species contributing to inflammation, as well as the Janus kinase/signal transducer, another inflammation inducer.[4]

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.