Falcon 1

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Falcon 1
Falcon 1 Flight 4 liftoff.jpg
Falcon 1 rocket.
Function Orbital launch vehicle
Manufacturer SpaceX
Country of origin United States
Height 21.3 m (70 ft)
Diameter 1.7 m (5.5 ft)
Mass 38,555 kg (85,000 lb)
Stages 2
Payload to LEO 180 kg (400 lb) demonstrated; 670 kg (1480 lb) proposed [1]
Payload to
430 kg (990 lb)
Launch history
Status Retired[2]
Launch sites Omelek Island
Total launches 5
Successes 2
Failures 3
Partial failures 0
First flight March 24, 2006
22:30 GMT
Last flight July 14, 2009
03:35 GMT
First stage
Engines 1 Merlin 1C
Thrust 454 kN (102,000 lbf)
Specific impulse 255 s (sea level)
(2.6 kN·s/kg)
Burn time 169 seconds
Fuel RP-1/LOX
Second stage
Engines 1 Kestrel
Thrust 31 kN (7,000 lbf)
Specific impulse 327 s (vacuum)
(3.2 kN·s/kg)
Burn time 378 seconds
Fuel RP-1/LOX

The Falcon 1 was an expendable launch system privately developed and manufactured by SpaceX during 2006–2009.[3] On 28 September 2008, Falcon 1 became the first privately-developed launch vehicle to go into orbit around the Earth.[4]:203

The two-stage-to-orbit rocket used LOX/RP-1 for both stages, the first powered by a single Merlin engine and the second powered by a single Kestrel engine. It was designed by SpaceX from the ground up.

The vehicle was launched a total of five times. Falcon 1 achieved orbit on its fourth attempt, in September 2008 with a mass simulator as a payload. On 14 July 2009, Falcon 1 made its final flight and successfully delivered the Malaysian RazakSAT satellite to orbit on SpaceX's first commercial launch (fifth launch overall). Following its fifth launch, the Falcon 1 was retired and succeeded by Falcon 9.

SpaceX had announced an enhanced variant, the Falcon 1e,[2] but development was stopped in favor of Falcon 9.


Launches previously planned, but never flown on Falcon 1

As part of a US$15 million contract, Falcon 1 was to carry the TacSat-1[5] in 2005. By late May 2005, SpaceX stated that Falcon 1 was ready to launch TacSat-1 from Vandenberg. But the Air Force did not want the launch of an untested rocket to occur until the final Titan IV flew from nearby SLC 4E. Subsequent and repeated delays due to Falcon 1 launch failures delayed TacSat-1's launch. After TacSat-2 was launched on an Orbital Sciences Minotaur I on December 16, 2006, the Department of Defense re-evaluated the need for launching TacSat-1. In August 2007, the Department of Defense canceled the planned launch of TacSat-1[6] because all of the TacSat objectives had been met.


First-stage view of the Merlin engine.

According to SpaceX, the Falcon 1 was designed to minimize price per launch for low-Earth-orbit satellites, increase reliability, and optimize flight environment and time to launch.[7] It also was used to verify components and structural design concepts that would be reused in the Falcon 9.

First stage

The first stage was made from friction-stir-welded 2219 aluminum alloy.[8] It employs a common bulkhead between the LOX and RP-1 tanks, as well as flight pressure stabilization. It can be transported safely without pressurization (like the heavier Delta II isogrid design) but gains additional strength when pressurized for flight (like the Atlas II, which could not be transported unpressurized). The parachute system, built by Irvin Para­chute Corp­oration, uses a high-speed drogue chute and a main chute.

The Falcon 1 first stage was powered by a single pump-fed Merlin 1C engine burning RP-1 and liquid oxygen providing 410 kilonewtons (92,000 lbf) of sea-level thrust and a specific impulse of 245 s (vacuum Isp 290 s).[8] The first stage burns to depletion, taking around 169 seconds to do so.[8]

Second stage

The second stage Falcon 1 tanks were built with a cryogenic-compatible 2014 aluminum alloy,[8] with the plan to move to aluminum-lithium alloy on the Falcon 1e.[8] The helium pressurization system pumps propellant to the engine, supplies heated[8] pressurized gas for the attitude control thrusters, and is used for zero-g propellant accumulation prior to engine restart. The Kestrel engine includes a titanium heat exchanger to pass waste heat to the helium, thereby greatly extending its work capacity.[9] The pressure tanks are composite overwrapped pressure vessels made by Arde corporation with inconel alloy and are the same as those used in the Delta IV.[10]

The second stage was powered by a pressure-fed Kestrel engine with 31 kilonewtons (7,000 lbf) of vacuum thrust and a vacuum specific impulse of 330 s.[8]


It had originally been planned that the first stage will return by parachute to a water landing and be recovered for reuse, but this capability was never demonstrated.[11][12] The second stage was not designed to be reusable.[11][12]


At launch, the first stage engine (Merlin) is ignited and throttled to full power while the launcher is restrained and all systems are verified by the flight computer. If the systems are operating correctly, the rocket is released and clears the tower in about seven seconds. The first-stage burn lasts about 2 minutes and 49 seconds. Stage separation is accomplished with explosive bolts and a pneumatically actuated pusher system.

The second stage Kestrel engine burns for about six minutes, inserting the payload into a low Earth orbit. It is capable of multiple restarts.

Private funding

The Falcon 1 rocket was developed with private funding.[13][14] The only other orbital launch vehicles to be privately funded and developed were the Conestoga in 1982 and Pegasus, first launched in 1990; which uses a large aircraft as its first stage.[15]

The total development cost of Falcon 1 was approximately US$90 million.[16]

While the development of Falcon 1 was privately funded, the first two Falcon 1 launches were purchased by the United States Department of Defense under a program that evaluates new US launch vehicles suitable for use by DARPA.[14][17][18]


SpaceX is one of the few launch system operators that publishes its launch prices, which are quoted as being the same for all customers.[19] In 2005 Falcon 1 was advertised as costing $5.9 million ($7.3 million when adjusted for inflation in 2015).[1][20] In 2006 until 2007 the quoted price of the rocket when operational was $6.7 million.[21] In late 2009 SpaceX announced new prices for the Falcon 1 and 1e at $7 million and $8.5 million respectively, with small discounts available for multi-launch contracts,[7] and in 2012 announced that payloads originally selected as flying on the Falcon 1 and 1e would fly as secondary payloads on the Falcon 9.[2]

Historically, the Falcon 1 was originally planned to launch about 600 kilograms (1,300 lb) to low-Earth orbit for US$6,000,000 but later declined to approximately 420 kilograms (930 lb) as the price increased to approximately US$9,000,000. It was SpaceX's offering intended to open up the smallsat launch market to competition. The final version of the Falcon 1, the Falcon 1e,[22] was projected to provide approximately 1,000 kilograms (2,200 lb) for US$11 million. The vehicle is now retired.

Several years ago, SpaceX was going to open up the smallsat launch market with the Falcon 1, which originally was to launch about 600 kilograms to LEO for $6 million; the payload capacity later declined to about 420 kilograms as the price increased to around $9 million. Later, the Falcon 1e was to provide approximately 1,000 kilograms for $11 million, but the company withdrew the vehicle from the market, citing limited demand.[23]

Launch sites

All flights have been launched from Kwajalein Atoll using the SpaceX launch facility on Omelek Island and range facilities of the Reagan Test Site.

Vandenberg AFB Space Launch Complex 3W was the original launch site for Falcon 1, but it was abandoned at the test-fire stage due to persistent schedule conflicts with adjacent launch pads.[24] Cape Canaveral Air Force Station Space Launch Complex 40 (the Falcon 9 pad) was considered for Falcon 1 launches but never developed before Falcon 1 was retired.[25]


Falcon 1 Versions[7][26][27] Merlin A; 2006–2007 Merlin C; 2007–2009 Falcon 1e (proposed)
Stage 1 1 × Merlin 1A 1 × Merlin 1C 1 × Merlin 1C
Stage 2 1 × Kestrel 1 × Kestrel 1 × Kestrel
(max; m)
21.3 22.25 26.83
1.7 1.7 1.7
Initial thrust
318 343 454
Takeoff weight
27.2 33.23 38.56
Fairing diameter
(Inner; m)
1.5 1.5 1.71
(LEO 185; kg)
570 (less to SSO)[citation needed] 450 (less to SSO)[citation needed] 1,010 (430 to SSO)[citation needed]
(GTO; kg)
(Mil. USD)
6.7 7 10.9
minimal Price/kg
(LEO 185; USD)
11,754[citation needed] 15,556[citation needed] 10,800 (25,348 to SSO)[citation needed]
minimal Price/kg
Success ratio
0/2 2/3

Launch history

Falcon 1 made five launches. The first three failed, however the subsequent two flights were successful, the first successful launch making it the first privately funded and developed liquid-propellent rocket to reach orbit.[4]:203 The fifth launch was its first commercial flight, and placed RazakSAT into low Earth orbit.[28]

See also


  1. 1.0 1.1 International Astronautical Federation, United Nations. Office for Outer Space Affairs, International Institute of Space Law (1 Jan 2006). Highlights in Space 2005: Progress in Space Science, Technology and Applications, International Cooperation and Space Law. United Nations Publications. p. 11. ISBN 978-9211009897. |access-date= requires |url= (help) <templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  2. 2.0 2.1 2.2 "Falcon 1". Space Exploration Technologies Corporation. Archived from the original on 14 September 2010. Retrieved 14 September 2010.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  3. Engel, Max (2013-03-01). "Launch Market on Cusp of Change". Satellite Today. Retrieved 2013-02-15. SpaceX is not the first private company to try to break through the commercial space launch market. The company, however, appears to be the real thing. Privately funded, it had a vehicle before it got money from NASA, and while NASA’s space station resupply funds are a tremendous boost, SpaceX would have existed without it.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  4. 4.0 4.1 Vance, Ashlee (2015). Elon Musk : Tesla, SpaceX, and the Quest for a Fantastic Future. New York: HarperCollins. ISBN 978-0-06-230123-9. |access-date= requires |url= (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  5. TacSat-1
  6. "Report: Pentagon cancels TacSat-1 launch". August 18, 2007. Retrieved July 15, 2011.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  7. 7.0 7.1 7.2 "Falcon 1 Overview". SpaceX. Retrieved 2007-05-05.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  8. 8.0 8.1 8.2 8.3 8.4 8.5 8.6 Bjelde, Brian; Max Vozoff; Gwynne Shotwell (August 2007). "The Falcon 1 Launch Vehicle: Demonstration Flights, Status, Manifest, and Upgrade Path". 21st Annual AIAA/USU Conference on Small Satellites (SSC07 ‐ III ‐ 6). Retrieved 2013-12-06.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  9. "Falcon 1 Flight Three Press Kit" (PDF). SpaceX. Retrieved 2008-09-30.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  10. "Falcon 1". Encyclopedia Astronautica. Space Daily. Retrieved 15 July 2015.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  11. 11.0 11.1 Brown, Mary Beth (2005-09-08). "SpaceX Announces the Falcon 9 Fully Reusable Heavy Lift Launch Vehicle" (Press release). El Segundo, CA: SpaceX. Retrieved 2009-11-04.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  12. 12.0 12.1 Clarke, Stephen (2008-09-28). "Sweet success at last for Falcon 1 rocket". Spaceflight Now. Retrieved 2009-11-04.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  13. Maney, Kevin (2005-06-17). "Private sector enticing public into final frontier". USAtoday.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  14. 14.0 14.1 Hoffman, Carl (2007-05-22). "Elon Musk Is Betting His Fortune on a Mission Beyond Earth's Orbit". Wired Magazine. Retrieved 2014-03-14.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  15. "Orbital Marks 25th Anniversary Of Company's Founding" (Press release). Orbital Sciences. 2007-04-02.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  16. "Commercial Market Assessment for Crew and Cargo Systems" (pdf). nasa.gov. NASA. 2011-04-27. p. 40. Retrieved 10 June 2015. SpaceX has publicly indicated that the development cost for Falcon 9 launch vehicle was approximately $300 million. Additionally, approximately $90 million was spent developing the Falcon 1 launch vehicle which did contribute to some extent to the Falcon 9, for a total of $390 million. NASA has verified these costs.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  17. "Falcon 1 Reaches Space But Loses Control and is Destroyed on Re-Entry". Satnews.com. 2007-03-21.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  18. Graham Warwick and Guy Norris, "Blue Sky Thinking: DARPA at 50," Aviation Week & Space Technology, Aug 18-25 2008, page 18.
  19. SpaceX, Falcon 1 Overview: Pricing and Performance (website viewed 31 Aug. 2010)
  20. "$5900000 in 2005 dollars". Wolfram Alpha. 2009-08-12.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  21. Malik, Tariq (2006-03-24). "SpaceX's Inaugural Falcon 1 Rocket Lost Just After Launch". Space.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  22. Jessy Xavier, "Europes First Vega Rocket Blasts Off Successfully," Oregon Herald, February 13, 2012
  23. "Virgin Galactic relaunches its smallsat launch business". NewSpace Journal. 2012-07-12. Retrieved 2012-07-11. Several years ago, SpaceX was going to open up the smallsat launch market with the Falcon 1, which originally was to launch about 600 kilograms to LEO for $6 million; the payload capacity later declined to about 420 kilograms as the price increased to around $9 million. Later, the Falcon 1e was to provide approximately 1,000 kilograms for $11 million, but the company withdrew the vehicle from the market, citing limited demand.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  24. Berger, Brian (January 9, 2006). "SpaceX To Try Again Feb. 9". Space News. Archived from the original on 2006-03-08.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  25. Kelly, John (2007-04-25). "SpaceX cleared for Cape launches". Florida Today.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  26. "SpaceX Falcon 1 Data Sheet" (PDF). SpaceX. 2008-09-28.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  27. "Falcon 1 Users Guide" (PDF). SpaceX. 2008-09-28.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  28. Clark, Stephen (July 14, 2009). "Commercial launch of SpaceX Falcon 1 rocket a success". Spaceflight Now.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>

Further reading

External links