In vitro

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Cloned plants in vitro

In vitro studies are performed with microorganisms, cells or biological molecules outside their normal biological context. Colloquially called "test tube experiments", these studies in biology and its sub-disciplines have traditionally been done in test-tubes, flasks, petri dishes etc and since the onset of molecular biology involve techniques such as the so-called omics. Studies that are conducted using components of an organism that have been isolated from their usual biological surroundings permit a more detailed or more convenient analysis than can be done with whole organisms. In contrast, in vivo studies are those conducted in animals including humans, and whole plants.

Definition

In vitro (Latin: in glass; often not italicized in English[1][2][3]) studies are conducted using components of an organism that have been isolated from their usual biological surroundings, such as microorganisms, cells or biological molecules. For example, microrganisms or cells can be studied in artificial culture medium, proteins can be examined in solutions. Colloquially called "test tube experiments", these studies in biology, medicine and its sub-disciplines are traditionally done in test-tubes, flasks, petri dishes etc. They now involve the full range of techniques used in molecular biology such as the so-called omics.

In contrast, studies conducted in living beings (microorganisms, animals, humans, or whole plants) are called in vivo .

Examples

Examples of in vitro studies include: the isolation, growth and identification of cells derived from multicellular organisms in (cell culture or tissue culture); subcellular components (e.g. mitochondria or ribosomes); cellular or subcellular extracts (e.g. wheat germ or reticulocyte extracts); purified molecules like proteins, DNA, or RNA); and the commercial production of antibiotics and other pharmaceutical products. Viruses, which only replicate in living cells, are studied in the laboratory in cell or tissue culture, and many animal virologists refer to such work as being in vitro to distinguish it from in vivo work on whole animals.

  • Protein purification involves the isolation of a specific protein of interest from a complex mixture of proteins, often obtained from homogenized cells or tissues.
  • In vitro fertilization is used to allow spermatozoa to fertilize eggs in a culture dish before implanting the resulting embryo or embryos into the uterus of the prospective mother.
  • In vitro diagnostics refers to a wide range of medical and veterinary laboratory tests that are used to diagnose diseases and monitor the clinical status of patients using samples of blood, cells or other tissues obtained from a patient.
  • In vitro testing has been used to characterize specific adsorption, distribution, metabolism and excretion (ADME) processes of drugs or general chemicals inside a living organism; for example Caco-2 cell experiments can be performed to estimate the absorption of compounds through the lining of the gastro-intestinal tract;[4] The partitioning of the compounds between organs can be determined to study distribution mechanisms;[5] Suspension or plated cultures of primary hepatocytes or hepatocyte-like cell lines (HepG2, HepaRG) can be used to study and quantify metabolism of chemicals.[6] These ADME process parameters can then be integrated into so called "physiologically based pharmacokinetic models" or PBPK.

Advantages

Just as studies in whole animals more and more replace human trials, so are in vitro studies replacing studies in whole animals. In vitro studies permit a species-specific, simpler, more convenient and more detailed analysis than can be done with the whole organism.

Simplicity

Living organisms are extremely complex functional systems that are made up of, at a minimum, many tens of thousands of genes, protein molecules, RNA molecules, small organic compounds, inorganic ions and complexes in an environment that is spatially organized by membranes and, in the case of multicellular organisms, organ systems.[7] These myriad components interact with each other and with their environment in a way that processes food, removes waste, moves components to the correct location, and is responsive to signalling molecules, other organisms, light, sound, heat, taste, touch, and balance.

Top view of a Vitrocell Vitrocell mammalian exposure module "smoking robot",(lid removed) view of four separated wells for cell culture inserts to be exposed to tobacco smoke or an aerosol for an in-vitro study of the effects.

This complexity makes it difficult to identify the interactions between its individual components and to explore their basic biological functions. In vitro work simplifies the system under study, so the investigator can focus on a small number of components.[8][9]

For example, the identity of proteins of the immune system (e.g. antibodies), and the mechanism by which they recognize and bind to foreign antigens would remain very obscure if not for the extensive use of in vitro work to isolate the proteins, identify the cells and genes that produce them, study the physical properties of their interaction with antigens, and identify how those interactions lead to cellular signals that activate other components of the immune system.[10]

Species specificity

Another advantage of in vitro methods is that human cells can be studied without "extrapolation" from an experimental animal's cellular response.[11]

Convenience, automation

In vitro methods can be miniaturized and automated, yielding high-throughput screening methods for testing molecules in pharmacology or toxicology [12]

Disadvantages

The primary disadvantage of in vitro experimental studies is that it is challenging to extrapolate from the results of in vitro work back to the biology of the intact organism. Investigators doing in vitro work must be careful to avoid over-interpretation of their results, which can lead to erroneous conclusions about organismal and systems biology.[13]

For example, scientists developing a new viral drug to treat an infection with a pathogenic virus (e.g. HIV-1) may find that a candidate drug functions to prevent viral replication in an in vitro setting (typically cell culture). However, before this drug is used in the clinic, it must progress through a series of in vivo trials to determine if it is safe and effective in intact organisms (typically small animals, primates and humans in succession). Typically, most candidate drugs that are effective in vitro prove to be ineffective in vivo because of issues associated with delivery of the drug to the affected tissues, toxicity towards essential parts of the organism that were not represented in the initial in vitro studies, or other issues.[14]


In vitro to in vivo extrapolation (IVIVE)

Results obtained from in vitro experiments cannot usually be transposed as is to predict the reaction of an entire organism in vivo. Build a consistent and reliable extrapolation procedure from in vitro results to in vitro is therefore extremely important. Two solutions are now commonly accepted:

  • (1) Increasing the complexity of in vitro systems to reproduce tissues and interactions between them (as in “human on chip” systems).[15]
  • (2) Using mathematical modeling to numerically simulate the behavior of the complex system, where the in vitro data provide model parameter values.[16]

The two approaches are not incompatible: better in vitro systems will provide better data to mathematical models. On the other hand increasingly sophisticated in vitro experiments collect increasingly numerous, complex, and challenging data to integrate: Mathematical models, such as systems biology models are much needed here.

IVIVE can be split in two steps: (1) dealing with pharmacokinetics (PK) and (2) dealing with pharmacodynamics (PD). Basically, PK describes quantitatively the fate of molecules in the body; PD focuses on their effects (therapeutic or toxic) at the biological target(s) level. It is classical to differentiate PK from PD, but they form a continuum and there may be feedback one on each other.[2] [17]

Extrapolating pharmacokinetics

Since the timing and intensity of effects on a given target depend on the concentration time course of candidate drug (parent molecule or metabolites) at that target site, in vivo tissue and organ sensitivities can be completely different or even inverse of those observed on cells cultured and exposed in vitro. That indicates that extrapolating effects observed in vitro needs a quantitative model of in vivo PK. It is generally accepted that physiologically based PK (PBPK) models are central to the extrapolations.[18]

Extrapolating pharmacodynamics

In the case of early effects or those without inter-cellular communications, it is assumed that the same cellular exposure concentration cause the same effects, both qualitatively and quantitatively, in vitro and in vivo. In these conditions, it is enough to (1) develop a simple PD model of the dose–response relationship observed in vitro and (2) transpose it without changes to predict in vivo effects.[19]

See In vitro to in vivo extrapolation for more details.

See also

Notes

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. Lua error in package.lua at line 80: module 'strict' not found.
  17. Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.