Kramers–Heisenberg formula

From Infogalactic: the planetary knowledge core
(Redirected from Kramers-Heisenberg formula)
Jump to: navigation, search

The Kramers-Heisenberg dispersion formula is an expression for the cross section for scattering of a photon by an atomic electron. It was derived before the advent of quantum mechanics by Hendrik Kramers and Werner Heisenberg in 1925,[1] based on the correspondence principle applied to the classical dispersion formula for light. The quantum mechanical derivation was given by Paul Dirac in 1927.[2][3]

The Kramers–Heisenberg formula was an important achievement when it was published, explaining the notion of "negative absorption" (stimulated emission), the Thomas-Reiche-Kuhn sum rule, and inelastic scattering - where the energy of the scattered photon may be larger or smaller than that of the incident photon - thereby anticipating the Raman effect.[4]

Equation

The Kramers-Heisenberg (KH) formula for second order processes is [1][5]
 \frac{d^2 \sigma}{d\Omega_{k^\prime}d(\hbar \omega_k^\prime)}=\frac{\omega_k^\prime}{\omega_k}\sum_{|f\rangle}\left | \sum_{|n\rangle} \frac{\langle f | T^\dagger | n \rangle \langle n | T | i \rangle}{E_i - E_n + \hbar \omega_k + i \frac{\Gamma_n}{2}}\right |^2 \delta (E_i - E_f + \hbar \omega_k - \hbar \omega_k^\prime)

It represents the probability of the emission of photons of energy  \hbar \omega_k^\prime in the solid angle d\Omega_{k^\prime} (centred in the k^\prime direction), after the excitation of the system with photons of energy  \hbar \omega_k. |i\rangle, |n\rangle, |f\rangle are the initial, intermediate and final states of the system with energy E_i , E_n , E_f respectively; the delta function ensures the energy conservation during the whole process. T is the relevant transition operator. \Gamma_n is the instrinsic linewidth of the intermediate state.

References

  1. 1.0 1.1 Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. J.J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley (1967), page 56.


<templatestyles src="Asbox/styles.css"></templatestyles>