List of electromagnetism equations

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Lua error in package.lua at line 80: module 'strict' not found. This article summarizes equations in the theory of electromagnetism.

Definitions

Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field.

Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by qm(Wb) = μ0 qm(Am).

Initial quantities

Quantity (common name/s) (Common) symbol/s SI units Dimension
Electric charge qe, q, Q C = As [I][T]
Monopole strength, magnetic charge qm, g, p Wb or Am [L]2[M][T]−2 [I]−1 (Wb)

[I][L] (Am)

Electric quantities

Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal , d is the dipole moment between two point charges, the volume density of these is the polarization density P. Position vector r is a point to calculate the electric field; r′ is a point in the charged object.

Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues.

Electric transport

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Linear, surface, volumetric charge density λe for Linear, σe for surface, ρe for volume.  q_e = \int \lambda_e \mathrm{d}\ell

 q_e = \iint \sigma_e \mathrm{d} S

 q_e = \iiint \rho_e \mathrm{d}V

C mn, n = 1, 2, 3 [I][T][L]n
Capacitance C C = \mathrm{d}q/\mathrm{d}V\,\!

V = voltage, not volume.

F = C V−1 [I]2[T]4[L]−2[M]−1
Electric current I  I = \mathrm{d}q/\mathrm{d}t \,\! A [I]
Electric current density J I = \mathbf{J} \cdot \mathrm{d} \mathbf{S} A m−2 [I][L]−2
Displacement current density Jd  \mathbf{J}_\mathrm{d} = \epsilon_0 \left ( \partial \mathbf{E} / \partial t \right ) = \partial \mathbf{D} / \partial t \,\! Am−2 [I][L]m−2
Convection current density Jc  \mathbf{J}_\mathrm{c} = \rho \mathbf{v} \,\! A m−2 [I] [L]m−2

Electric fields

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Electric field, field strength, flux density, potential gradient E \mathbf{E} =\mathbf{F}/q\,\! N C−1 = V m−1 [M][L][T]−3[I]−1
Electric flux ΦE \Phi_E = \int_S \mathbf{E} \cdot \mathrm{d} \mathbf{A}\,\! N m2 C−1 [M][L]3[T]−3[I]−1
Absolute permittivity; ε  \epsilon = \epsilon_r \epsilon_0\,\! F m−1 [I]2 [T]4 [M]−1 [L]−3
Electric dipole moment p \mathbf{p} = 2q\mathbf{a}\,\!

a = charge separation directed from -ve to +ve charge

C m [I][T][L]
Electric Polarization, polarization density P \mathbf{P} = \mathrm{d} \langle \mathbf{p} \rangle /\mathrm{d} V \,\! C m−2 [I][T][L]−2
Electric displacement field D  \mathbf{D} = \epsilon\mathbf{E} = \epsilon_0 \mathbf{E} + \mathbf{P}\, C m−2 [I][T][L]−2
Electric displacement flux ΦD \Phi_D = \int_S \mathbf{D} \cdot \mathrm{d} \mathbf{A}\,\! C [I][T]
Absolute electric potential, EM scalar potential relative to point  r_0 \,\!

Theoretical:  r_0 = \infty \,\!
Practical:  r_0 = R_\mathrm{earth} \,\! (Earth's radius)

φ ,V  V = -\frac{W_{\infty r }}{q} = -\frac{1}{q}\int_\infty^r \mathbf{F} \cdot \mathrm{d} \mathbf{r} = -\int_{r_1}^{r_2} \mathbf{E} \cdot \mathrm{d} \mathbf{r}\,\! V = J C−1 [M] [L]2 [T]−3 [I]−1
Voltage, Electric potential difference ΔφV \Delta V = -\frac{\Delta W}{q} = -\frac{1}{q}\int_{r_1}^{r_2} \mathbf{F} \cdot \mathrm{d} \mathbf{r} = -\int_{r_1}^{r_2} \mathbf{E} \cdot \mathrm{d} \mathbf{r} \,\! V = J C−1 [M] [L]2 [T]−3 [I]−1

Magnetic quantities

Magnetic transport

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Linear, surface, volumetric pole density λm for Linear, σm for surface, ρm for volume.  q_m = \int \lambda_m \mathrm{d}\ell

 q_m = \iint \sigma_m \mathrm{d} S

 q_m = \iiint \rho_m \mathrm{d}V

Wb mn

A m−(n + 1),
n = 1, 2, 3

[L]2[M][T]−2 [I]−1 (Wb)

[I][L] (Am)

Monopole current Im  I_m = \mathrm{d}q_m/\mathrm{d}t \,\! Wb s−1

A m s−1

[L]2[M][T]−3 [I]−1 (Wb)

[I][L][T]−1 (Am)

Monopole current density Jm  I = \iint \mathbf{J}_\mathrm{m} \cdot \mathrm{d} \mathbf{A} Wb s−1 m−2

A m−1 s−1

[M][T]−3 [I]−1 (Wb)

[I][L]−1[T]−1 (Am)

Magnetic fields

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Magnetic field, field strength, flux density, induction field B \mathbf{F} =q_e \left ( \mathbf{v}\times\mathbf{B} \right ) \,\! T = N A−1 m−1 = Wb m−2 [M][T]−2[I]−1
Magnetic potential, EM vector potential A  \mathbf{B} = \nabla \times \mathbf{A} T m = N A−1 = Wb m3 [M][L][T]−2[I]−1
Magnetic flux ΦB \Phi_B = \int_S \mathbf{B} \cdot \mathrm{d} \mathbf{A}\,\! Wb = T m2 [L]2[M][T]−2[I]−1
Magnetic permeability \mu \,\! \mu \ = \mu_r \,\mu_0 \,\! V·s·A−1·m−1 = N·A−2 = T·m·A−1 = Wb·A−1·m−1 [M][L][T]−2[I]−2
Magnetic moment, magnetic dipole moment m, μB, Π

Two definitions are possible:

using pole strengths,
\mathbf{m} = q_m \mathbf{a}\,\!

using currents:
\mathbf{m} = NIA\mathbf{\hat{n}}\,\!

a = pole separation

N is the number of turns of conductor

A m2 [I][L]2
Magnetization M \mathbf{M} = \mathrm{d} \langle \mathbf{m} \rangle /\mathrm{d} V \,\! A m−1 [I] [L]−1
Magnetic field intensity, (AKA field strength) H Two definitions are possible:

most common:
\mathbf{B} = \mu \mathbf{H} = \mu_0 \left ( \mathbf{H} + \mathbf{M} \right ) \,

using pole strengths,[1]
\mathbf{H} = \mathbf{F} / q_m \,

A m−1 [I] [L]−1
Intensity of magnetization, magnetic polarization I, J \mathbf{I} = \mu \mathbf{M} \,\! T = N A−1 m−1 = Wb m2 [M][T]−2[I]−1
Self Inductance L Two equivalent definitions are possible:

L=N\left ( \mathrm{d} \Phi/\mathrm{d} I \right )\,\!

L\left ( \mathrm{d} I/\mathrm{d} t \right )=-NV\,\!

H = Wb A−1 [L]2 [M] [T]−2 [I]−2
Mutual inductance M Again two equivalent definitions are possible:

M_1=N\left ( \mathrm{d} \Phi_2/\mathrm{d} I_1 \right )\,\!

M\left ( \mathrm{d} I_2/\mathrm{d} t \right )=-NV_1\,\!

1,2 subscripts refer to two conductors/inductors mutually inducing voltage/ linking magnetic flux through each other. They can be interchanged for the required conductor/inductor;

M_2=N\left ( \mathrm{d} \Phi_1/\mathrm{d} I_2 \right )\,\!
M\left ( \mathrm{d} I_1/\mathrm{d} t \right )=-NV_2\,\!

H = Wb A−1 [L]2 [M] [T]−2 [I]−2
Gyromagnetic ratio (for charged particles in a magnetic field) γ \omega = \gamma B \,\! Hz T−1 [M]−1[T][I]

Electric circuits

DC circuits, general definitions

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Terminal Voltage for

Power Supply

Vter V = J C−1 [M] [L]2 [T]−3 [I]−1
Load Voltage for Circuit Vload V = J C−1 [M] [L]2 [T]−3 [I]−1
Internal resistance of power supply Rint  R_\mathrm{int} = V_\mathrm{ter}/I \,\! Ω = V A−1 = J s C−2 [M][L]2 [T]−3 [I]−2
Load resistance of circuit Rext  R_\mathrm{ext} = V_\mathrm{load}/I \,\! Ω = V A−1 = J s C−2 [M][L]2 [T]−3 [I]−2
Electromotive force (emf), voltage across entire circuit including power supply, external components and conductors E \mathcal{E} = V_\mathrm{ter} + V_\mathrm{load} \,\! V = J C−1 [M] [L]2 [T]−3 [I]−1

AC circuits

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Resistive load voltage VR  V_R = I_R R \,\! V = J C−1 [M] [L]2 [T]−3 [I]−1
Capacitive load voltage VC  V_C = I_C X_C\,\! V = J C−1 [M] [L]2 [T]−3 [I]−1
Inductive load voltage VL V_L = I_L X_L\,\! V = J C−1 [M] [L]2 [T]−3 [I]−1
Capacitive reactance XC X_C = \frac{1}{\omega_\mathrm{d} C} \,\! Ω−1 m−1 [I]2 [T]3 [M]−2 [L]−2
Inductive reactance XL  X_L = \omega_d L \,\! Ω−1 m−1 [I]2 [T]3 [M]−2 [L]−2
AC electrical impedance Z V = I Z\,\!

Z = \sqrt{R^2 + \left ( X_L - X_C \right )^2 } \,\!

Ω−1 m−1 [I]2 [T]3 [M]−2 [L]−2
Phase constant δ, φ \tan\phi= \frac{X_L - X_C}{R}\,\! dimensionless dimensionless
AC peak current I0 I_0 = I_\mathrm{rms} \sqrt{2}\,\! A [I]
AC root mean square current Irms  I_\mathrm{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} \left [ I \left ( t \right ) \right ]^2 \mathrm{d} t}  \,\! A [I]
AC peak voltage V0  V_0 = V_\mathrm{rms} \sqrt{2} \,\! V = J C−1 [M] [L]2 [T]−3 [I]−1
AC root mean square voltage Vrms  V_\mathrm{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} \left [ V \left ( t \right ) \right ]^2 \mathrm{d} t}  \,\! V = J C−1 [M] [L]2 [T]−3 [I]−1
AC emf, root mean square \mathcal{E}_\mathrm{rms}, \sqrt{\langle \mathcal{E} \rangle} \,\! \mathcal{E}_\mathrm{rms}=\mathcal{E}_\mathrm{m}/\sqrt{2}\,\! V = J C−1 [M] [L]2 [T]−3 [I]−1
AC average power  \langle P \rangle \,\!  \langle P \rangle =\mathcal{E}I_\mathrm{rms}\cos\phi\,\! W = J s−1 [M] [L]2 [T]−3
Capacitive time constant τC \tau_C = RC\,\! s [T]
Inductive time constant τL \tau_L = L/R\,\! s [T]

Magnetic circuits

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Magnetomotive force, mmf F, \mathcal{F}, \mathcal{M} \mathcal{M} = NI

N = number of turns of conductor

A [I]

Electromagnetism

Electric fields

General Classical Equations

Physical situation Equations
Electric potential gradient and field  \mathbf{E} = - \nabla V

 \Delta V = -\int_{r_1}^{r_2} \mathbf{E} \cdot d\mathbf{r}\,\!

Point charge  \mathbf{E} = \frac{q}{4 \pi \epsilon_0 \left | \mathbf{r} \right |^2 }\mathbf{\hat{r}} \,\!
At a point in a local array of point charges \mathbf{E} = \sum \mathbf{E}_i = \frac{1}{4 \pi \epsilon_0} \sum_i \frac{q_i}{\left | \mathbf{r}_i - \mathbf{r} \right |^2}\mathbf{\hat{r}}_i \,\!
At a point due to a continuum of charge  \mathbf{E} = \frac{1}{4\pi\epsilon_0} \int_V \frac{\mathbf{r} \rho \mathrm{d}V}{\left | \mathbf{r} \right |^3} \,\!
Electrostatic torque and potential energy due to non-uniform fields and dipole moments  \boldsymbol{\tau} = \int_V \mathrm{d} \mathbf{p} \times \mathbf{E}

 U = \int_V  \mathrm{d} \mathbf{p} \cdot \mathbf{E}

Magnetic fields and moments

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

General classical equations

Physical situation Equations
Magnetic potential, EM vector potential  \mathbf{B} = \nabla \times \mathbf{A}
Due to a magnetic moment  \mathbf{A} = \frac{\mu_0}{4\pi}\frac{\mathbf{m}\times\mathbf{r}}{\left | \mathbf{r} \right |^3}

\mathbf{B}({\mathbf{r}})=\nabla\times{\mathbf{A}}=\frac{\mu_{0}}{4\pi}\left(\frac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{\left | \mathbf{r} \right |^{5}}-\frac{{\mathbf{m}}}{\left | \mathbf{r} \right |^{3}}\right)

Magnetic moment due to a current distribution  \mathbf{m} = \frac{1}{2}\int_V \mathbf{r}\times\mathbf{J} \mathrm{d} V
Magnetostatic torque and potential energy due to non-uniform fields and dipole moments  \boldsymbol{\tau} = \int_V \mathrm{d} \mathbf{m} \times \mathbf{B}

 U = \int_V \mathrm{d} \mathbf{m} \cdot \mathbf{B}

Electromagnetic induction

Physical situation Nomenclature Equations
Transformation of voltage
  • N = number of turns of conductor
  • η = energy efficiency
\frac{V_s}{V_p} = \frac{N_s}{N_p} = \frac{I_p}{I_s} = \eta \,\!

Electric circuits and electronics

Below N = number of conductors or circuit components. Subcript net refers to the equivalent and resultant property value.

Physical situation Nomenclature Series Parallel
Resistors and conductors
  • Ri = resistance of resistor or conductor i
  • Gi = conductance of conductor or conductor i
R_\mathrm{net} = \sum_{i=1}^{N} R_i\,\!

{1\over G_\mathrm{net}} = \sum_{i=1}^{N} {1\over G_i}\,\!

{1\over R_\mathrm{net}} = \sum_{i=1}^{N} {1\over R_i}\,\!

G_\mathrm{net} = \sum_{i=1}^{N} G_i \,\!

Charge, capacitors, currents
  • qi = capacitance of capacitor i
  • qi = charge of charge carrier i
q_\mathrm{net} = \sum_{i=1}^N q_i \,\!

{1\over C_\mathrm{net}} = \sum_{i=1}^N {1\over C_i} \,\! I_\mathrm{net} = I_i \,\!

q_\mathrm{net} = \sum_{i=1}^N q_i \,\!

C_\mathrm{net} = \sum_{i=1}^N C_i \,\! I_\mathrm{net} = \sum_{i=1}^N I_i \,\!

Inductors
  • Li = self-inductance of inductor i
  • Lij = self-inductance element ij of L matrix
  • Mij = mutual inductance between inductors i and j
L_\mathrm{net} = \sum_{i=1}^N L_i \,\! {1\over L_\mathrm{net}} = \sum_{i=1}^N {1\over L_i} \,\!

V_i = \sum_{j=1}^N L_{ij} \frac{\mathrm{d}I_j}{\mathrm{d}t} \,\!

Series circuit equations
Circuit DC Circuit equations AC Circuit equations
RC circuits Circuit equation

R \frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{C} = \mathcal{E}\,\!

Capacitor charge  q = C\mathcal{E}\left ( 1 - e^{-t/RC} \right )\,\!

Capacitor discharge  q = C\mathcal{E}e^{-t/RC}\,\!

RL circuits Circuit equation

L\frac{\mathrm{d}I}{\mathrm{d}t}+RI=\mathcal{E}\,\!

Inductor current rise I = \frac{\mathcal{E}}{R}\left ( 1-e^{-Rt/L}\right )\,\!

Inductor current fall I=\frac{\mathcal{E}}{R}e^{-t/\tau_L}=I_0e^{-Rt/L}\,\!

LC circuits Circuit equation

L\frac{\mathrm{d}^2q}{\mathrm{d}t^2} + q/C = \mathcal{E}\,\!

Circuit equation

L\frac{\mathrm{d}^2q}{\mathrm{d}t^2} + q/C = \mathcal{E} \sin\left(\omega_0 t + \phi \right) \,\!

Circuit resonant frequency \omega_\mathrm{res} = 1/\sqrt{LC}\,\!

Circuit charge q = q_0 \cos(\omega t + \phi)\,\!

Circuit current I=-\omega q_0 \sin(\omega t + \phi)\,\!

Circuit electrical potential energy U_E=q^2/2C=Q^2\cos^2(\omega t + \phi)/2C\,\!

Circuit magnetic potential energy U_B=Q^2\sin^2(\omega t + \phi)/2C\,\!

RLC Circuits Circuit equation

L\frac{\mathrm{d}^2q}{\mathrm{d}t^2} + R\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{C} = \mathcal{E} \,\!

Circuit equation

 L\frac{\mathrm{d}^2q}{\mathrm{d}t^2} + R\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{C} = \mathcal{E} \sin\left(\omega_0 t + \phi \right) \,\!

Circuit charge

q = q_0 eT^{-Rt/2L}\cos(\omega't+\phi)\,\!

See also

Footnotes

  1. Lua error in package.lua at line 80: module 'strict' not found.

Sources

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.

Further reading

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.