Mupirocin

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Mupirocin
Structural formula of mupirocin
Ball-and-stick model of the mupirocin molecule
Systematic (IUPAC) name
9-[(E)-4-[(2S,3R,4R,5S)-3,4-dihydroxy-5-[[(2S,3S)-3- [(2S,3S)-3-hydroxybutan-2-yl]oxiran-2-yl]methyl] oxan-2-yl]-3-methylbut-2-enoyl]oxynonanoic acid
Clinical data
Trade names Bactroban
AHFS/Drugs.com monograph
MedlinePlus a688004
Licence data US FDA:link
Pregnancy
category
  • US: B (No risk in non-human studies)
Legal status
  • Rx Only (US)
Routes of
administration
topical,nasal
Pharmacokinetic data
Protein binding 97%
Biological half-life 20 to 40 minutes
Identifiers
CAS Number 12650-69-0 YesY
ATC code D06AX09 (WHO) R01AX06
PubChem CID: 446596
DrugBank DB00410 YesY
ChemSpider 393914 YesY
UNII D0GX863OA5 N
KEGG D01076 YesY
ChEBI CHEBI:7025 N
ChEMBL CHEMBL719 YesY
Chemical data
Formula C26H44O9
Molecular mass 500.622 g/mol
  • O=C(O)CCCCCCCCOC(=O)\C=C(/C)C[C@@H]2OC[C@H](C[C@@H]1O[C@H]1[C@@H](C)[C@@H](O)C)[C@@H](O)[C@H]2O
  • InChI=1S/C26H44O9/c1-16(13-23(30)33-11-9-7-5-4-6-8-10-22(28)29)12-20-25(32)24(31)19(15-34-20)14-21-26(35-21)17(2)18(3)27/h13,17-21,24-27,31-32H,4-12,14-15H2,1-3H3,(H,28,29)/b16-13+/t17-,18-,19-,20-,21-,24+,25-,26-/m0/s1 YesY
  • Key:MINDHVHHQZYEEK-HBBNESRFSA-N YesY
 NYesY (what is this?)  (verify)

Mupirocin (Bactroban or Centany) is an antibiotic of the monoxycarbolic acid class.[1] It was originally isolated from Pseudomonas fluorescens NCIMB 10586,[2] developed by Beecham.

Mupirocin is bacteriostatic at low concentrations and bactericidal at high concentrations.[3] It is used topically and is effective against Gram-positive bacteria, including MRSA.[4] Mupirocin is a mixture of several pseudomonic acids, with pseudomonic acid A (PA-A) constituting greater than 90% of the mixture. Also present in mupirocin are pseudomonic acid B with an additional hydroxyl group at C8,[5] pseudomonic acid C with a double bond between C10 and C11, instead of the epoxide of PA-A,[6] and pseudomonic acid D with a double bond at C4` and C5` in the 9-hydroxy-nonanoic acid portion of mupirocin.[7]

Mupirocin is inactive for most anaerobic bacteria, mycobacteria, mycoplasma, chlamydia, yeast and fungi.[8]

It is on the World Health Organization's List of Essential Medicines, a list of the most important medications needed in a basic health system.[9]

Medical uses

Mupirocin is used as a topical treatment for bacterial skin infections, for example, furuncle, impetigo, open wounds, etc. It is also useful in the treatment of methicillin-resistant Staphylococcus aureus (MRSA), which is a significant cause of death in hospitalized patients having received systemic antibiotic therapy. It is suggested, however, that mupirocin cannot be used for extended periods of time, or indiscriminately, as resistance does develop, and could, if it becomes widespread, destroy mupirocin's value as a treatment for MRSA. It may also result in overgrowth of non-susceptible organisms.

Resistance

Shortly after the clinical use of mupirocin began, strains of Staphylococcus aureus that were resistant to mupirocin emerged, with nares clearance rates of less than 30% success.[10][11] Two distinct populations of mupirocin-resistant S. aureus were isolated. One strain possessed low-level resistance, MuL, (MIC = 8–256 mg/L) and another possessed high-level resistance, MuH, (MIC > 256 mg/L).[10] Resistance in the MuL strains is probably due to mutations in the organism's wild-type isoleucinyl-tRNA synthetase. In E. coli IleRS, a single amino acid mutation was shown to alter mupirocin resistance.[12] MuH is linked to the acquisition of a separate Ile synthetase gene, mupA.[13] Mupirocin is not a viable antibiotic against MuH strains. Other antibiotic agents such as azelaic acid, nitrofurazone, silver sulfadiazine, and ramoplanin have been shown to be effective against MuH strains.[10]

Most strains of Propionibacterium acnes, a causative agent of the skin disease acne vulgaris, are naturally resistant to mupirocin.[14]

The mechanism of mupirocin differs from other clinical antibiotics, rendering cross-resistance to other antibiotics unlikely.[10] However, the MupA gene may co-transfer with other antibacterial resistance genes. This has been observed already with resistance genes for triclosan, tetracycline, and trimethoprim.[10]


Mechanism

Mupirocin reversibly binds to the isoleucyl t-RNA synthetase in Staphylococcus aureus and Streptococcus, resulting in inhibition of protein synthesis. DNA and cell wall formation are also negatively impacted to a lesser degree.[15] The inhibition of RNA synthesis was shown to be a protective mechanism in response to a lack of one amino acid, isoleucine.[16] In vivo studies in Escherichia coli demonstrated that pseudomonic acid inhibits isoleucine t-RNA synthetase (IleRS).[4] This mechanism of action is shared with furanomycin, an analog of isoleucine.[17]

Biosynthesis

File:Mupirocin Cluster chart.png
Table 1. The biosynthetic gene cluster of mupirocin
File:Monic acid4.png
Figure 1. The domain structure of MmpA, MmpC, and MmpD for the synthesis of monic acid. The biosynthesis of monic acid is not colinear but has been rearranged in this diagram. The protein name is displayed inside of the arrow with module and domain structure listed below. ACP=acyl carrier protein, AT=acyl transferase, DH=dehydratase, ER=enoyl reductase, HMG=3-hydroxy-3-methylglutaric acid, MeT=methyl transferase, KR=ketoreductase, KS=ketosynthase, TE=thioesterase.
File:Pseudomonic acid A-D.png
Figure 2. The structure of pseudomonic acid A-D, labeled A-D, respectively.
File:Mupirocin C15 methylation.png
Figure 3. The C15 methyl group of monic acid is attached to C3 by the following reaction scheme. MupH is an 3-hydroxy-3-methylglutarate-Coenzyme A synthase, MupJ and MupK are Enoyl-CoA hydratases.[18]
File:Mupirocin pyran2.png
Figure 4. The pyran ring of mupirocin is generated in this proposed multistep reaction [15]. Gene knockouts of mupO, mupU, mupV and macpE abolish PA-A production but not PA-B production, demonstrating that PA-B is a precursor to PA-A.[19]
File:9-HNA.png
Figure 5. MmpB is proposed to synthesize 9-HN with a 3-hydroxy-propionate starter unit and three malonyl-CoA extenter units. The domain structure of MmpB is shown below alongside MupE, the proposed enoyl reductase required for complete saturation of 9-HN. ACP=acyl carrier protein, DH=dehydratase, ER=enoyl reductase, KR=ketoreductase, KS=ketosynthase, TE=thioesterase.

Biosynthesis of Pseudomonic Acid A

The 74 kb mupirocin gene cluster contains six multi-domain enzymes and twenty-six other peptides (Table 1).[18] Four large multi-domain type I polyketide synthase (PKS) proteins are encoded, as well as several single function enzymes with sequence similarity to type II PKSs.[18] Therefore, it is believed that mupirocin is constructed by a mixed type I and type II PKS system. The mupirocin cluster exhibits an atypical acyltransferase (AT) organization, in that there are only two AT domains, and both are found on the same protein, MmpC. These AT domains are the only domains present on MmpC, while the other three type I PKS proteins contain no AT domains.[18] The mupirocin pathway also contains several tandem acyl carrier protein doublets or triplets. This may be an adaptation to increase the throughput rate or to bind multiple substrates simultaneously.[18]

Pseudomonic acid A is the product of an esterification between the 17C polyketide monic acid and the 9C fatty acid 9-hydroxy-nonanoic acid. The possibility that the entire molecule is assembled as a single polyketide with a Baeyer-Villiger oxidation inserting an oxygen into the carbon backbone has been ruled out because C1 of monic acid and C9' of 9-hydroxy-nonanoic acid are both derived from C1 of acetate.[20]

Monic acid biosynthesis

Biosynthesis of the 17C monic acid unit begins on MmpD (Figure 1).[18] One of the AT domains from MmpC may transfer an activated acetyl group from acetyl-Coenzyme A (CoA) to the first ACP domain. The chain is extended by malonyl-CoA, followed by a SAM-dependent methylation at C12 (see Figure 2 for PA-A numbering) and reduction of the B-keto group to an alcohol. The dehydration (DH) domain in module 1 is predicted to be non-functional due to a mutation in the conserved active site region. Module 2 adds another two carbons by malonyl-CoA extender unit, followed by ketoreduction (KR) and dehydration. Module three adds a malonyl-CoA extender unit, followed by SAM-dependent methylation at C8, ketoreduction, and dehydration. Module 4 extends the molecule with a malonyl-CoA unit followed by ketoreduction.

Assembly of monic acid is continued by the transfer of the 12C product of MmpD to MmpA.[18] Two more rounds of extension with malonyl-CoA units are achieved by module 5 and 6. Module 5 also contains a KR domain.

Post-PKS tailoring

The keto group at C3 is replaced with a methyl group in a multi-step reaction (Figure 3). MupG begins by decarboxylating a malonyl-ACP. The alpha carbon of the resulting acetyl-ACP is linked to C3 of the polyketide chain by MupH. This intermediate is dehydrated and decarboxylated by MupJ and MupK, respectively.[18]

The formation of the pyran ring requires many enzyme-mediated steps (Figure 4). The double bond between C8 and C9 is proposed to migrate to between C8 and C16.[19] Gene knockout experiments of mupO, mupU, mupV, and macpE have eliminated PA-A production.[19] PA-B production is not removed by these knockouts, demonstrating that PA-B is not created by hydroxylating PA-A. A knockout of mupW eliminated the pyran ring, identifying MupW as being involved in ring formation.[19] It is not known whether this occurs before or after the esterification of monic acid to 9-hydroxy-nonanoic acid.

The epoxide of PA-A at C10-11 is believed to be inserted after pyran formation by a cytochrome P450 such as MupO.[18] A gene knockout of mupO abolished PA-A production but PA-B, which also conatins the C10-C11 epoxide, remained.[19] This indicates that MupO is either not involved or is not essential for this epoxidation step.

9-Hydroxy-nonanoic acid biosynthesis

The nine-carbon fatty acid 9-hydroxy-nonanoic acid (9-HN) is derived as a separate compound and later esterified to monic acid to form pseudomonic acid. 13C labeled acetate feeding has shown that C1-C6 are constructed with acetate in the canonical fashion of fatty acid synthesis. C7' shows only C1 labeling of acetate, while C8' and C9' show a reversed pattern of 13C labeled acetate.[20] It is speculated that C7-C9 arises from a 3-hydroxypropionate starter unit, which is extended three times with malonyl-CoA and fully reduced to yield 9-HN. It has also been suggested that 9-HN is initiated by 3-hydroxy-3-methylglutaric acid (HMG). This latter theory was not supported by feeding of [3-14C] or [3,6-13C2]-HMG.[21]

It is proposed that MmpB to catalyzes the synthesis of 9-HN (Figure 5). MmpB contains a KS, KR, DH, 3 ACPs, and a thioesterase (TE) domain.[18] It does not contain an enoyl reductase (ER) domain, which would be required for the complete reduction to the nine-carbon fatty acid. MupE is a single-domain protein that shows sequence similarity to known ER domains and may complete the reaction.[18] It also remains possible that 9-hydroxy-nonanoic acid is derived partially or entirely from outside of the mupirocin cluster.

Mupirocin versus fusidic acid

Both 2 percent ointments are applied to patients 3 times daily for 7 days to cure primary and secondary skin infections. The mupirocin bacteriologic cure rate is 97 percent and the fusidic acid bacteriologic cure rate is 87 percent,[22] but mupirocin is more expensive than fusidic acid.

References

  1. Mupirocin by antimicrobe.org Editorial Board. Retrieved June 2012
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. 4.0 4.1 Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. 10.0 10.1 10.2 10.3 10.4 Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. Lua error in package.lua at line 80: module 'strict' not found.
  17. Lua error in package.lua at line 80: module 'strict' not found.
  18. 18.00 18.01 18.02 18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.10 Lua error in package.lua at line 80: module 'strict' not found.
  19. 19.0 19.1 19.2 19.3 19.4 Lua error in package.lua at line 80: module 'strict' not found.
  20. 20.0 20.1 Lua error in package.lua at line 80: module 'strict' not found.
  21. Lua error in package.lua at line 80: module 'strict' not found.
  22. Lua error in package.lua at line 80: module 'strict' not found.

External links