S-Methylmethionine

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
S-Methylmethionine[1]
Methylmethionine.png
Names
IUPAC name
(3-Amino-3-carboxy-propyl)-dimethyl-sulfonium
Other names
S-Methyl-L-methionine
Vitamin U
Identifiers
4727-40-6 YesY
ChEBI CHEBI:17728 N
ChemSpider 128519 N
Jmol 3D model Interactive image
KEGG C03172 N
PubChem 145692
  • InChI=1S/C6H13NO2S/c1-10(2)4-3-5(7)6(8)9/h5H,3-4,7H2,1-2H3/p+1/t5-/m0/s1 N
    Key: YDBYJHTYSHBBAU-YFKPBYRVSA-O N
  • InChI=1/C6H13NO2S/c1-10(2)4-3-5(7)6(8)9/h5H,3-4,7H2,1-2H3/p+1/t5-/m0/s1
    Key: YDBYJHTYSHBBAU-YJIVXYNWBY
  • C[S+](C)CC[C@@H](C(=O)O)N
Properties
C6H15NO2S+
Molar mass 164.247 g/mol
Melting point 139 °C (282 °F; 412 K)[1] (bromide salt, decomposes)
134 °C (273 °F)[1] (chloride salt, decomposes)
Vapor pressure {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

S-Methylmethionine (SMM) is a derivative of methionine with the chemical formula (CH3)2S+CH2CH2CH(NH3+)CO2. This cation is an intermediate in many biosynthetic pathways owing to the sulfonium functional group. The natural derivative S-methylmethionine is biosynthesized from L-methionine which is first converted to S-adenosylmethionine. The subsequent conversion, involving replacement of the adenosyl group by a methyl group is catalyzed by the enzyme methionine S-methyltransferase. S-methylmethionine is particularly abundant in plants, being more abundant than methionine.[2]

S-Methylmethionine is sometimes referred to as vitamin U,[3] but it is not considered a true vitamin. The term was coined in 1950 by Garnett Cheney for uncharacterized anti-ulcerogenic[4] factors in raw cabbage juice that may help speed healing of peptic ulcers.

S-Methylmethionine is claimed to have protective effects in the gastrointestinal mucosa and in the liver.[5]

Biosynthesis and biochemical function

S-Methylmethionine arises via the methylation of methionine by S-adenosyl methionine (SAM). The coproduct is S-adenosyl homocysteine.[2]

The biological roles of S-methylmethionine are not well understood. Speculated roles include methionine storage, use as a methyl donor, regulation of SAM.[2] A few plants use S-methylmethionine as a precursor to the osmolyte dimethylsulfoniopropionate (DMSP). Intermediates include dimethylsulfoniumpropylamine and dimethylsulfoniumpropionaldehyde.[6]

Beer flavor precursor in barley malt

S-Methylmethionine is found in barley and during the malting process, particularly the curing stage in kilning, heat causes it to break down to form dimethyl sulfide (DMS).[7]

References

  1. 1.0 1.1 1.2 Merck Index, 12th ed., 10165 ISBN 0-911910-12-3
  2. 2.0 2.1 2.2 Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.

External links