Silver sulfide

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Silver sulfide
Ball-and-stick model of silver sulfide
Sample of silver sulfide
Names
IUPAC name
Silver(I) sulfide, Silver sulfide
Identifiers
21548-73-2 YesY
ChemSpider 145878 N
EC Number 244-438-2
Jmol 3D model Interactive image
PubChem 166738
UNII 9ZB10YHC1C N
  • InChI=1S/2Ag.S/q2*+1;-2 N
    Key: XUARKZBEFFVFRG-UHFFFAOYSA-N N
  • [S-2].[Ag+].[Ag+]
Properties
Ag2S
Molar mass 247.80 g·mol−1
Appearance Grayish-black crystal
Odor Odorless
Density 7.234 g/cm3 (25 °C)[1][2]
7.12 g/cm3 (117 °C)[3]
Melting point 836 °C (1,537 °F; 1,109 K)[1]
6.21·10−15 g/L (20 °C)
6.31·10−50
Solubility Soluble in aq. HCN, aq. citric acid with KNO3
Insoluble in acids, alkalies, aqueous ammoniums[4]
Structure
Monoclinic, mP12 (β-form)
Cubic, cI8 (α-form)
Cubic, cF12 (γ-form)[3][5]
P21/n, No. 14 (α-form)[5]
Im3m, No. 229 (β-form)
Fm3m, No. 225 (γ-form)[3]
2/m (α-form)[5]
4/m 3 2/m (β-form, γ-form)[3]
a = 4.23 Å, b = 6.91 Å, c = 7.87 Å (α-form)[5]
α = 90°, β = 99.583°, γ = 90°
Thermochemistry
76.57 J/mol·K[6]
143.93 J/mol·K[6]
−32.59 kJ/mol[6]
−40.71 kJ/mol[6]
Vapor pressure {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Silver sulfide (Ag
2
S
) is the sulfide of silver. It is useful as a photosensitizer in photography.

Properties

This dense black solid constitutes the tarnish that forms over time on silverware and other silver objects.[7] Silver sulfide is insoluble in all solvents, but is degraded by strong acids. Silver sulfide features a covalent bond, as it is made up of silver (electronegativity of 1.98) and sulfur (electronegativity of 2.58). It is a component of classical qualitative inorganic analysis.[8] When formed on electrical contacts operating in an atmosphere rich in hydrogen sulfide, long filaments known as silver whiskers can form.

Degrading wooden treasure chests aboard sunken galleons can provide the sulfide needed for certain sulfide ion consuming bacteria to produce hydrogen sulfide gas. When combined with silver the hydrogen sulfide gas creates a layer of black silver sulfide patina on the silver, protecting the inner silver from further conversion to silver sulfide. [9]

Structure

Three forms are known: monoclinic acanthite (β-form), stable below 179 °C, body centered cubic so-called argentite (α-form), stable above 180 °C, and a high temperature face-centred cubic (γ-form) stable above 586 °C.[5] The higher temperature forms are electrical conductors. It is found in nature as relatively low temperature mineral acanthite. Acanthite is an important ore of silver. In the acanthite, monoclinic, form there are two crystallographically distinct silver atoms with two and three near neighbour sulfur atoms respectively.[10] The name argentite refers to a cubic form, which, due to instability in "normal" temperatures, is found in form of the pseudomorphosis of acanthite after argentite.

References

  1. 1.0 1.1 Lua error in package.lua at line 80: module 'strict' not found.
  2. Cite error: Invalid <ref> tag; no text was provided for refs named sigma
  3. 3.0 3.1 3.2 3.3 Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. 5.0 5.1 5.2 5.3 5.4 Lua error in package.lua at line 80: module 'strict' not found.
  6. 6.0 6.1 6.2 6.3 Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. FRUEH, A. J. (1958). The crystallography of silver sulfide, Ag2S. Zeitschrift für Kristallographie-Crystalline Materials, 110(1-6), 136-144.

External links

Tarnishing of Silver: A Short Review V&A Conservation Journal

<templatestyles src="Asbox/styles.css"></templatestyles>