Solstice

From Infogalactic: the planetary knowledge core
(Redirected from Solstices)
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

UT date and time of
equinoxes and solstices on Earth [1]
event equinox solstice equinox solstice
month March June September December
year
day time day time day time day time
2016 20 04:30 20 22:34 22 14:21 21 10:44
2017 20 10:28 21 04:24 22 20:02 21 16:28
2018 20 16:15 21 10:07 23 01:54 21 22:23
2019 20 21:58 21 15:54 23 07:50 22 04:19
2020 20 03:50 20 21:44 22 13:31 21 10:02
2021 20 09:37 21 03:32 22 19:21 21 15:59
2022 20 15:33 21 09:14 23 01:04 21 21:48
2023 20 21:24 21 14:58 23 06:50 22 03:27
2024 20 03:06 20 20:51 22 12:44 21 09:20
2025 20 09:01 21 02:42 22 18:19 21 15:03
2026 20 14:46 21 08:24 23 00:05 21 20:50


A solstice is an astronomical event that occurs twice each year (in June and December) as the Sun reaches its highest or lowest excursion relative to the celestial equator on the celestial sphere. Both the solstices and the equinoxes are directly connected with the seasons of the year.

The term solstice can also be used in a broader sense, as the day when this occurs. The day of the solstice is either the longest day of the year (summer solstice) or the shortest day of the year (winter solstice) for any place outside of the tropics. Alternative terms, with no ambiguity as to which hemisphere is the context, are June solstice and December solstice, referring to the months of year in which they take place.

At latitudes in the temperate zone, the summer solstice marks the day when the sun appears highest in the sky. However, in the tropics, the sun appears directly overhead (called the subsolar point) some days (or even months) before the solstice and again after the solstice, which means the subsolar point occurs twice each year.

The word solstice is derived from the Latin sol (sun) and sistere (to stand still), because at the solstices, the Sun stands still in declination; that is, the seasonal movement of the Sun's path (as seen from Earth) comes to a stop before reversing direction.

Definitions and frames of reference

For an observer on the North Pole, the sun reaches the highest position in the sky once a year in June. The day this occurs is called the June solstice day. Similarly, for an observer on the South Pole, the sun reaches the highest position on December solstice day. When it is the summer solstice at one Pole, it is the winter solstice on the other. The sun's westerly motion never ceases as the Earth is continually in rotation. However, the sun's motion in declination comes to a stop at the moment of solstice. In that sense, solstice means "sun-standing". This modern scientific word descends from a Latin scientific word in use in the late Roman republic of the 1st century BC: solstitium. Pliny uses it a number of times in his Natural History with a similar meaning that it has today. It contains two Latin-language morphemes, sol, "sun", and -stitium, "stoppage".[2] The Romans used "standing" to refer to a component of the relative velocity of the Sun as it is observed in the sky. Relative velocity is the motion of an object from the point of view of an observer in a frame of reference. From a fixed position on the ground, the sun appears to orbit around the Earth.[3]

To an observer in an inertial frame of reference, the planet Earth is seen to rotate about an axis and revolve around the Sun in an elliptical path with the Sun at one focus. The Earth's axis is tilted with respect to the plane of the Earth's orbit and this axis maintains a position that changes little with respect to the background of stars. An observer on Earth therefore sees a solar path that is the result of both rotation and revolution.

A solargraph taken from the Atacama Pathfinder Experiment at the Llano de Chajnantor Observatory in the southern hemisphere. This is a long-exposure photograph, with the image exposed for six months in a direction facing east of north, from mid-December 2009 until the southern winter solstice in June 2010.[4] The sun's path each day can be seen from right to left in this image across the sky; the path of the following day runs slightly lower, until the day of the winter solstice, whose path is the lowest one in the image.

The component of the Sun's motion seen by an earthbound observer caused by the revolution of the tilted axis – which, keeping the same angle in space, is oriented toward or away from the Sun – is an observed daily increment (and lateral offset) of the elevation of the Sun at noon for approximately six months and observed daily decrement for the remaining six months. At maximum or minimum elevation, the relative yearly motion of the Sun perpendicular to the horizon stops and reverses direction.

Outside of the tropics, the maximum elevation occurs at the summer solstice and the minimum at the winter solstice. The path of the Sun, or ecliptic, sweeps north and south between the northern and southern hemispheres. The days are longer around the summer solstice and shorter around the winter solstice. When the Sun's path crosses the equator, the length of the nights at latitudes +L° and -L° are of equal length. This is known as an equinox. There are two solstices and two equinoxes in a tropical year.[5]

Relationship to seasons

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

The seasons occur because the Earth's axis of rotation is not perpendicular to its orbital plane (the “plane of the ecliptic”) but currently makes an angle of about 23.44° (called the "obliquity of the ecliptic"), and because the axis keeps its orientation with respect to an inertial frame of reference. As a consequence, for half the year the Northern Hemisphere is inclined toward the Sun while for the other half year the Southern Hemisphere has this distinction. The two moments when the inclination of Earth's rotational axis has maximum effect are the solstices.

At the June solstice the subsolar point is further north than any other time: at latitude 23.44° north, known as the Tropic of Cancer. Similarly at the December solstice the subsolar point is further south than any other time: at latitude 23.44° south, known as the Tropic of Capricorn. The subsolar point will cross every latitude between these two extremes exactly twice per year.

Also during the June solstice, places on the Arctic Circle (latitude 66.56° north) will see the Sun just on the horizon during midnight, and all places north of it will see the Sun above horizon for 24 hours. That is the midnight sun or midsummer-night sun or polar day. On the other hand, places on the Antarctic Circle (latitude 66.56° south) will see the Sun just on the horizon during midday, and all places south of it will not see the Sun above horizon at any time of the day. That is the polar night. During the December Solstice, the effects on both hemispheres are just the opposite. This also allows the polar sea ice to increase its annual growth and temporary extent at a greater level due to lack of direct sunlight.

Cultural aspects

Ancient Greek names and concepts

The concept of the solstices was embedded in ancient Greek celestial navigation. As soon as they discovered that the Earth is spherical[6] they devised the concept of the celestial sphere,[7] an imaginary spherical surface rotating with the heavenly bodies (ouranioi) fixed in it (the modern one does not rotate, but the stars in it do). As long as no assumptions are made concerning the distances of those bodies from Earth or from each other, the sphere can be accepted as real and is in fact still in use.

The stars move across the inner surface of the celestial sphere along the circumferences of circles in parallel planes[8] perpendicular to the Earth's axis extended indefinitely into the heavens and intersecting the celestial sphere in a celestial pole.[9] The Sun and the planets do not move in these parallel paths but along another circle, the ecliptic, whose plane is at an angle, the obliquity of the ecliptic, to the axis, bringing the Sun and planets across the paths of and in among the stars.*

Cleomedes states:[10]

The band of the Zodiac (zōdiakos kuklos, "zodiacal circle") is at an oblique angle (loksos) because it is positioned between the tropical circles and equinoctial circle touching each of the tropical circles at one point ... This Zodiac has a determinable width (set at 8° today) ... that is why it is described by three circles: the central one is called "heliacal" (hēliakos, "of the sun").

The term heliacal circle is used for the ecliptic, which is in the center of the zodiacal circle, conceived as a band including the noted constellations named on mythical themes. Other authors use Zodiac to mean ecliptic, which first appears in a gloss of unknown author in a passage of Cleomedes where he is explaining that the Moon is in the zodiacal circle as well and periodically crosses the path of the Sun. As some of these crossings represent eclipses of the Moon, the path of the Sun is given a synonym, the ekleiptikos (kuklos) from ekleipsis, "eclipse".

English names

The two solstices can be distinguished by different pairs of names, depending on which feature one wants to stress.

Solstice terms in East Asia

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

The traditional East Asian calendars divide a year into 24 solar terms (節氣). Xiàzhì (pīnyīn) or Geshi (rōmaji) (Chinese and Japanese: 夏至; Korean: 하지(Haji); Vietnamese: Hạ chí; literally: "summer's extreme") is the 10th solar term, and marks the summer solstice. It begins when the Sun reaches the celestial longitude of 90° (around June 21) and ends when the Sun reaches the longitude of 105° (around July 7). Xiàzhì more often refers in particular to the day when the Sun is exactly at the celestial longitude of 90°.

Dōngzhì (pīnyīn) or Tōji (rōmaji) (Chinese and Japanese: 冬至; Korean: 동지(Dongji); Vietnamese: Đông chí; literally: "winter's extreme") is the 22nd solar term, and marks the winter solstice. It begins when the Sun reaches the celestial longitude of 270° (around December 22 ) and ends when the Sun reaches the longitude of 285° (around January 5). Dōngzhì more often refers in particular to the day when the Sun is exactly at the celestial longitude of 270°.

The solstices (as well as the equinoxes) mark the middle of the seasons in East Asian calendars. Here, the Chinese character means "extreme", so the terms for the solstices directly signify the summits of summer and winter.

Solstice celebrations

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Lua error in package.lua at line 80: module 'strict' not found.

Summer Solstice Sunrise over Stonehenge

The term solstice can also be used in a wider sense, as the date (day) that such a passage happens. The solstices, together with the equinoxes, are connected with the seasons. In some languages they are considered to start or separate the seasons; in others they are considered to be centre points (in England, in the Northern Hemisphere, for example, the period around the northern solstice is known as midsummer, and Midsummer's Day is 24 June, about three days after the solstice itself). Similarly 25 December is the start of the Christmas celebration, and is the day the Sun begins to return to the Northern Hemisphere.

Many cultures celebrate various combinations of the winter and summer solstices, the equinoxes, and the midpoints between them, leading to various holidays arising around these events. For the southern solstice, Christmas is the most popular holiday to have arisen. In addition, Yalda, Saturnalia, Karachun, Hanukkah, Kwanzaa and Yule (see winter solstice for more) are also celebrated around this time. For the northern solstice, Christian cultures celebrate the feast of St. John from June 23 to 24 (see St. John's Eve, Ivan Kupala Day, Midsummer), while Neopagans observe Midsummer, also known as Litha. For the vernal (spring) equinox, several spring-time festivals are celebrated, such as the Persian Nowruz, the observance in Judaism of Passover and in most Christian churches of Easter. The autumnal equinox has also given rise to various holidays, such as the Jewish holiday of Sukkot. At the midpoints between these four solar events, cross-quarter days are celebrated.

In the southern tip of South America, the Mapuche people celebrate We Tripantu (the New Year) a few days after the northern solstice, on June 24. Further north, the Atacama people formerly celebrated this date with a noise festival, to call the Sun back. Further east, the Aymara people celebrate their New Year on June 21. A celebration occurs at sunrise, when the sun shines directly through the Gate of the Sun in Tiwanaku. Other Aymara New Year feasts occur throughout Bolivia, including at the site of El Fuerte de Samaipata.

In many cultures, the solstices and equinoxes traditionally determine the midpoint of the seasons, which can be seen in the celebrations called midsummer and midwinter. In this vein, the Japanese celebrate the start of each season with an occurrence known as Setsubun. The cumulative cooling and warming that result from the tilt of the planet become most pronounced after the solstices, leading to the more recent custom of using them to mark the beginning of summer and winter in most countries of Central and Northern Europe, as well as in Canada, the USA and New Zealand.

In the Hindu calendar, two sidereal solstices are named Makara Sankranti which marks the start of Uttarayana and Karka Sankranti which marks the start of Dakshinayana. The former occurs around January 14 each year, while the latter occurs around July 14 each year. These mark the movement of the Sun along a sidereally fixed zodiac (precession is ignored) into Makara, the zodiacal sign which corresponds with Capricorn, and into Karkat, the zodiacal sign which corresponds with Cancer, respectively.

Solstice determination

Unlike the equinox, the solstice time is not easy to determine. The changes in solar declination become smaller as the sun gets closer to its maximum/minimum declination. The days before and after the solstice, the declination speed is less than 30 arcseconds per day which is less than ​160 of the angular size of the sun, or the equivalent to just 2 seconds of right ascension.

This difference is hardly detectable with indirect viewing based devices like sextant equipped with a vernier, and impossible with more traditional tools like a gnomon[16] or an astrolabe. It is also hard to detect the changes on sunrise/sunset azimuth due to the atmospheric refraction[17] changes. Those accuracy issues render it impossible to determine the solstice day based on observations made within the 3 (or even 5) days surrounding the solstice without the use of more complex tools.

Accounts do not survive but Greek astronomers must have used an approximation method based on interpolation, which is still used by some amateurs. This method consists of recording the declination angle at noon during some days before and after the solstice, trying to find two separate days with the same declination. When those two days are found, the halfway time between both noons is estimated solstice time. An interval of 45 days has been postulated as the best one to achieve up to a quarter-day precision, in the solstice determination.[18] In 2012, the journal DIO found that accuracy of one or two hours with balanced errors can be attained by observing the sun's equal altitudes about S = twenty degrees (or d = about 20 days) before and after the summer solstice because the average of the two times will be early by q arc minutes where q is (πe cosA)/3 times the square of S in degrees (e = earth orbit eccentricity, A = earth's perihelion or sun's apogee), and the noise in the result will be about 41 hours divided by d if the eye's sharpness is taken as one arc minute.

Astronomical almanacs define the solstices as the moments when the sun passes through the solstitial colure, i.e. the times when the apparent geocentric longitude of the sun is equal to 90° (summer solstice) or 270° (winter solstice).[19]

In the constellations

Using the current official IAU constellation boundaries – and taking into account the variable precession speed and the rotation of the ecliptic – the solstices shift through the constellations as follows[20] (expressed in astronomical year numbering in which the year 0 = 1 BC, −1 = 2 BC, etc.):

  • The northern solstice passed from Leo into Cancer in year −1458, passed into Gemini in year −10, passed into Taurus in December 1989, and is expected to pass into Aries in year 4609.
  • The southern solstice passed from Capricornus into Sagittarius in year −130, is expected to pass into Ophiuchus in year 2269, and is expected to pass into Scorpius in year 3597.

Solstices on other planets

Due to the 687-day orbit of Mars around the Sun (almost twice that of the Earth), the planet experiences its summer and winter solstices at approximately 23 month intervals. The most recent northern summer solstice on Mars was on 15 February 2014, and the next will occur on 3 January 2016.[21]

See also

References

  1. https://aa.usno.navy.mil/data/Earth_Seasons
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. The Principle of relativity was first applied to inertial frames of reference by Albert Einstein. Before then, the concepts of absolute time and space applied by Isaac Newton prevailed. The motion of the Sun across the sky is still called "apparent motion" in celestial navigation in deference to the Newtonian view, but the reality of the supposed "real motion" has no special laws to commend it, both are visually verifiable and both follow the same laws of physics.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. For an introduction to these topics of astronomy refer to Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Strabo II.5.2., "aplaneis asteres kata parallēlōn pherontai kuklōn", "the fixed stars are borne in parallel circles"
  9. Strabo II.5.2, "ho di'autēs (gē) aksōn kai tou ouranou mesou tetagmenos", "the axis through it (the Earth) extending through the middle of the sky"
  10. Lua error in package.lua at line 80: module 'strict' not found. This translation cites this passage at the end of Book I Chapter 2 but other arrangements have it at the start of Chapter 3. In the Greek version of Lua error in package.lua at line 80: module 'strict' not found. the passage starts Chapter 4.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. Lua error in package.lua at line 80: module 'strict' not found.
  17. Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.
  20. Lua error in package.lua at line 80: module 'strict' not found.
  21. Lua error in package.lua at line 80: module 'strict' not found.

External links