Stable nuclide

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Graph of nuclides (isotopes) by type of decay. Orange and blue nuclides are unstable, with the black squares between these regions representing stable nuclides. The unbroken line passing below many of the nuclides represents the theoretical position on the graph of nuclides for which proton number is the same as neutron number. The graph shows that elements with more than 20 protons must have more neutrons than protons in order to be stable.

Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes.

The 80 elements with one or more stable isotopes comprise a total of 254 nuclides that have not been known to decay using current equipment (see list at the end of this article). Of these elements, 26 have only one stable isotope; they are thus termed monoisotopic. The rest have more than one stable isotope. Tin has ten stable isotopes, the largest number known for an element.

Definition of stability, and naturally occurring nuclides

Most naturally occurring nuclides are stable (about 254; see list at the end of this article); and about 34 more (total of 288) are known radioactives with sufficiently long half-lives (also known) to occur primordially. If the half-life of a nuclide is comparable to, or greater than, the Earth's age (4.5 billion years), a significant amount will have survived since the formation of the Solar System, and then is said to be primordial. It will then contribute in that way to the natural isotopic composition of a chemical element. Primordially present radioisotopes are easily detected with half-lives as short as 700 million years (e.g., 235U), although some primordial isotopes have been detected with half-lives as short as 80 million years (e.g., 244Pu). However, this is the present limit of detection, as the nuclide with the next-shortest half-life (niobium-92 with half-life 34.7 million years) has not yet been detected in nature.

Many naturally-occurring radioisotopes (another 51 or so, for a total of about 339) exhibit still shorter half-lives than 80 million years, but they are made freshly, as daughter products of decay processes of primordial nuclides (for example, radium from uranium) or from ongoing energetic reactions, such as cosmogenic nuclides produced by present bombardment of Earth by cosmic rays (for example, carbon-14 made from nitrogen).

Some isotopes that are classed as stable (i.e. no radioactivity has been observed for them) are predicted to have extremely long half-lives (sometimes as high as 1018 years or more). If the predicted half-life falls into an experimentally accessible range, such isotopes have a chance to move from the list of stable nuclides to the radioactive category, once their activity is observed. E.g. bismuth-209 and tungsten-180 were formerly classed as stable, but have been recently (2003) found to be alpha-active. However, such nuclides do not change their status as primordial when they are found to be radioactive.

Most stable isotopes in the earth are believed to have been formed in processes of nucleosynthesis, either in the Big Bang, or in generations of stars that preceded the formation of the solar system. However, some stable isotopes also show abundance variations in the earth as a result of decay from long-lived radioactive nuclides. These decay-products are termed radiogenic isotopes, in order to distinguish them from the much larger group of 'non-radiogenic' isotopes.

The so-called island of stability may reveal a number of long-lived or even stable atoms that are heavier (and with more protons) than lead.

Isotopes per element

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Of the known chemical elements, 80 elements have at least one stable nuclide. These comprise the first 82 elements from hydrogen to lead, with the two exceptions, technetium (element 43) and promethium (element 61), that do not have any stable nuclides. As of December 2011, there were a total of 254 known "stable" nuclides. In this definition, "stable" means a nuclide that has never been observed to decay against the natural background. Thus, these elements have half lives too long to be measured by any means, direct or indirect.

Stable isotopes:

  • 1 element (tin) has 10 stable isotopes
  • 1 element (xenon) has 8 stable isotopes
  • 4 elements have 7 stable isotopes apiece
  • 8 elements have 6 stable isotopes apiece
  • 10 elements have 5 stable isotopes apiece
  • 9 elements have 4 stable isotopes apiece
  • 5 elements have 3 stable isotopes apiece
  • 16 elements have 2 stable isotopes apiece
  • 26 elements have 1 single stable isotope.

These last 26 are thus called monoisotopic elements.[1] The mean number of stable isotopes for elements which have at least one stable isotope is 254/80 = 3.2.

"Magic numbers" and odd and even proton and neutron count

Stability of isotopes is affected by the ratio of protons to neutrons, and also by presence of certain "magic numbers" of neutrons or protons which represent closed and filled quantum shells. These quantum shells correspond to a set of energy levels within the shell model of the nucleus; filled shells, such as the filled shell of 50 protons for tin, confers unusual stability on the nuclide. As in the case of tin, a magic number for Z, the atomic number, tends to increase the number of stable isotopes for the element.

Just as in the case of electrons, which have the lowest energy state when they occur in pairs in a given orbital, nucleons (both protons and neutrons) exhibit a lower energy state when their number is even, rather than odd. This stability tends to prevent beta decay (in two steps) of many even-even nuclides into another even-even nuclide of the same mass number but lower energy (and of course with two more protons and two fewer neutrons), because decay proceeding one step at a time would have to pass through an odd-odd nuclide of higher energy. This makes for a larger number of stable even-even nuclides, up to three for some mass numbers, and up to seven for some atomic (proton) numbers.

Conversely, of the 254 known stable nuclides, only five have both an odd number of protons and odd number of neutrons: hydrogen-2 (deuterium), lithium-6, boron-10, nitrogen-14, and tantalum-180m. Also, only four naturally occurring, radioactive odd-odd nuclides have a half-life over a billion years: potassium-40, vanadium-50, lanthanum-138, and lutetium-176. Odd-odd primordial nuclides are rare because most odd-odd nuclei are highly unstable with respect to beta decay, because the decay products are even-even, and are therefore more strongly bound, due to nuclear pairing effects.[2]

Yet another effect of the instability of an odd number of either type of nucleons, is that odd-numbered elements tend to have fewer stable isotopes. Of the 26 monoisotopic elements that have only a single stable isotope, all but one have an odd atomic number — the single exception to both rules being beryllium. All of these elements also have an even number of neutrons, with the single exception again being beryllium.

Nuclear isomers, including a "stable" one

The count of 254 known stable nuclides includes tantalum-180m, since even though its decay and instability is automatically implied by its notation of "metastable", still this has not yet been observed. All "stable" isotopes (stable by observation, not theory) are the ground states of nuclei, with the exception of tantalum-180m, which is a nuclear isomer or excited state. The ground state of this particular nucleus, Ta-180, is radioactive with a comparatively short half-life of 8 hours; in contrast, the decay of the excited nuclear isomer is extremely strongly forbidden by spin-parity selection rules. It has been reported experimentally by direct observation that the half-life of 180mTa to gamma decay must be more than 1015 years. Other possible modes of 180mTa decay (beta decay, electron capture and alpha decay) have also never been observed.

Still-unobserved decay

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Binding energy per nucleon of common isotopes.

It is expected that some continual improvement of experimental sensitivity will allow discovery of very mild radioactivity (instability) of some isotopes that are considered to be stable today. For an example of a recent discovery, it was not until 2003 that bismuth-209 (the only naturally-occurring isotope of bismuth) was shown to be very mildly radioactive.[3] Prior to this discovery, there were theoretical predictions from nuclear physics that bismuth-209 would decay very slowly by alpha emission. These calculations were confirmed by the experimental observations in 2003.


Summary table for numbers of each class of nuclides

This is a summary table from List of nuclides. Note that numbers are not exact, and may change slightly in the future, as nuclides are observed to be radioactive, or new half-lives are determined to some precision.

Type of nuclide by stability class Number of nuclides in class Running total of nuclides in all classes to this point Notes
Theoretically stable to all but proton decay.[citation needed] 90 90 Includes first 40 elements. Proton decay yet to be observed.
Energetically unstable to one or more known decay modes,[citation needed] but no decay yet seen. Considered stable until radioactivity confirmed. 164 254 Spontaneous fission possible for "stable" nuclides > niobium-93. Other mechanisms possible for heavier nuclides. Total is the observationally stable nuclides
Radioactive primordial nuclides. 34 288 Includes Bi, U, Th, Pu.
Radioactive nonprimordial, but naturally occurring on Earth. ~ 51 ~ 339 Cosmogenic nuclides from cosmic rays; daughters of radioactive primordials such as francium, etc.

List of stable nuclides

<templatestyles src="Div col/styles.css"/>

  1. Hydrogen-1 (protium)
  2. Hydrogen-2 (deuterium)
  3. Helium-3
  4. Helium-4
    no mass number 5
  5. Lithium-6
  6. Lithium-7
    no mass number 8
  7. Beryllium-9
  8. Boron-10
  9. Boron-11
  10. Carbon-12
  11. Carbon-13
  12. Nitrogen-14
  13. Nitrogen-15
  14. Oxygen-16
  15. Oxygen-17
  16. Oxygen-18
  17. Fluorine-19
  18. Neon-20
  19. Neon-21
  20. Neon-22
  21. Sodium-23
  22. Magnesium-24
  23. Magnesium-25
  24. Magnesium-26
  25. Aluminium-27
  26. Silicon-28
  27. Silicon-29
  28. Silicon-30
  29. Phosphorus-31
  30. Sulfur-32
  31. Sulfur-33
  32. Sulfur-34
  33. Sulfur-36
  34. Chlorine-35
  35. Chlorine-37
  36. Argon-36 (2E)
  37. Argon-38
  38. Argon-40
  39. Potassium-39
  40. Potassium-41
  41. Calcium-40 (2E)
  42. Calcium-42
  43. Calcium-43
  44. Calcium-44
  45. Calcium-46 (2B)
  46. Scandium-45
  47. Titanium-46
  48. Titanium-47
  49. Titanium-48
  50. Titanium-49
  51. Titanium-50
  52. Vanadium-51
  53. Chromium-50 (2E)
  54. Chromium-52
  55. Chromium-53
  56. Chromium-54
  57. Manganese-55
  58. Iron-54 (2E)
  59. Iron-56
  60. Iron-57
  61. Iron-58
  62. Cobalt-59
  63. Nickel-58 (2E)
  64. Nickel-60
  65. Nickel-61
  66. Nickel-62
  67. Nickel-64
  68. Copper-63
  69. Copper-65
  70. Zinc-64 (2E)
  71. Zinc-66
  72. Zinc-67
  73. Zinc-68
  74. Zinc-70 (2B)
  75. Gallium-69
  76. Gallium-71
  77. Germanium-70
  78. Germanium-72
  79. Germanium-73
  80. Germanium-74
  81. Arsenic-75
  82. Selenium-74 (2E)
  83. Selenium-76
  84. Selenium-77
  85. Selenium-78
  86. Selenium-80 (2B)
  87. Bromine-79
  88. Bromine-81
  89. Krypton-78 (2E)
  90. Krypton-80
  91. Krypton-82
  92. Krypton-83
  93. Krypton-84
  94. Krypton-86 (2B)
  95. Rubidium-85
  96. Strontium-84 (2E)
  97. Strontium-86
  98. Strontium-87
  99. Strontium-88
  100. Yttrium-89
  101. Zirconium-90
  102. Zirconium-91
  103. Zirconium-92
  104. Zirconium-94 (2B)
  105. Niobium-93 (SF)
  106. Molybdenum-92 (2E)
  107. Molybdenum-94 (SF)
  108. Molybdenum-95 (SF)
  109. Molybdenum-96 (SF)
  110. Molybdenum-97 (SF)
  111. Molybdenum-98 (2B)
    Technetium - No stable isotopes
  112. Ruthenium-96 (2E)
  113. Ruthenium-98 (SF)
  114. Ruthenium-99 (SF)
  115. Ruthenium-100 (SF)
  116. Ruthenium-101 (SF)
  117. Ruthenium-102 (SF)
  118. Ruthenium-104 (2B)
  119. Rhodium-103 (SF)
  120. Palladium-102 (2E)
  121. Palladium-104 (SF)
  122. Palladium-105 (SF)
  123. Palladium-106 (SF)
  124. Palladium-108 (SF)
  125. Palladium-110 (2B)
  126. Silver-107 (SF)
  127. Silver-109 (SF)
  128. Cadmium-106 (2E)
  129. Cadmium-108 (2E)
  130. Cadmium-110 (SF)
  131. Cadmium-111 (SF)
  132. Cadmium-112 (SF)
  133. Cadmium-114 (2B)
  134. Indium-113 (SF)
  135. Tin-112 (2E)
  136. Tin-114 (SF)
  137. Tin-115 (SF)
  138. Tin-116 (SF)
  139. Tin-117 (SF)
  140. Tin-118 (SF)
  141. Tin-119 (SF)
  142. Tin-120 (SF)
  143. Tin-122 (2B)
  144. Tin-124 (2B)
  145. Antimony-121 (SF)
  146. Antimony-123 (SF)
  147. Tellurium-120 (2E)
  148. Tellurium-122 (SF)
  149. Tellurium-123 (E)
  150. Tellurium-124 (SF)
  151. Tellurium-125 (SF)
  152. Tellurium-126 (SF)
  153. Iodine-127 (SF)
  154. Xenon-124 (2E)
  155. Xenon-126 (2E)
  156. Xenon-128 (SF)
  157. Xenon-129 (SF)
  158. Xenon-130 (SF)
  159. Xenon-131 (SF)
  160. Xenon-132 (SF)
  161. Xenon-134 (2B)
  162. Caesium-133 (SF)
  163. Barium-132 (2E)
  164. Barium-134 (SF)
  165. Barium-135 (SF)
  166. Barium-136 (SF)
  167. Barium-137 (SF)
  168. Barium-138 (SF)
  169. Lanthanum-139 (SF)
  170. Cerium-136 (2E)
  171. Cerium-138 (2E)
  172. Cerium-140 (SF)
  173. Cerium-142 (A, 2B)
  174. Praseodymium-141 (SF)
  175. Neodymium-142 (SF)
  176. Neodymium-143 (A)
  177. Neodymium-145 (A)
  178. Neodymium-146 (A, 2B)
  179. Neodymium-148 (A, 2B)
    Promethium - No stable isotopes
  180. Samarium-144 (2E)
    no mass number 147
  181. Samarium-149 (A)
  182. Samarium-150 (A)
  183. Samarium-152 (A)
  184. Samarium-154 (2B)
    no mass number 151
  185. Europium-153 (A)
  186. Gadolinium-154 (A)
  187. Gadolinium-155 (A)
  188. Gadolinium-156 (SF)
  189. Gadolinium-157 (SF)
  190. Gadolinium-158 (SF)
  191. Gadolinium-160 (2B)
  192. Terbium-159 (SF)
  193. Dysprosium-156 (A, 2E)
  194. Dysprosium-158 (A, 2E)
  195. Dysprosium-160 (A)
  196. Dysprosium-161 (A)
  197. Dysprosium-162 (A)
  198. Dysprosium-163 (SF)
  199. Dysprosium-164 (SF)
  200. Holmium-165 (A)
  201. Erbium-162 (A, 2E)
  202. Erbium-164 (A, 2E)
  203. Erbium-166 (A)
  204. Erbium-167 (A)
  205. Erbium-168 (A)
  206. Erbium-170 (A, 2B)
  207. Thulium-169 (A)
  208. Ytterbium-168 (A, 2E)
  209. Ytterbium-170 (A)
  210. Ytterbium-171 (A)
  211. Ytterbium-172 (A)
  212. Ytterbium-173 (A)
  213. Ytterbium-174 (A)
  214. Ytterbium-176 (A, 2B)
  215. Lutetium-175 (A)
  216. Hafnium-176 (A)
  217. Hafnium-177 (A)
  218. Hafnium-178 (A)
  219. Hafnium-179 (A)
  220. Hafnium-180 (A)
  221. Tantalum-180m (A, B, E, IT)*
  222. Tantalum-181 (A)
  223. Tungsten-182 (A)
  224. Tungsten-183 (A)
  225. Tungsten-184 (A)
  226. Tungsten-186 (A, 2B)
  227. Rhenium-185 (A)
  228. Osmium-184 (A, 2E)
  229. Osmium-187 (A)
  230. Osmium-188 (A)
  231. Osmium-189 (A)
  232. Osmium-190 (A)
  233. Osmium-192 (A, 2B)
  234. Iridium-191 (A)
  235. Iridium-193 (A)
  236. Platinum-192 (A)
  237. Platinum-194 (A)
  238. Platinum-195 (A)
  239. Platinum-196 (A)
  240. Platinum-198 (A, 2B)
  241. Gold-197 (A)
  242. Mercury-196 (A, 2E)
  243. Mercury-198 (A)
  244. Mercury-199 (A)
  245. Mercury-200 (A)
  246. Mercury-201 (A)
  247. Mercury-202 (A)
  248. Mercury-204 (A, 2B)
  249. Thallium-203 (A)
  250. Thallium-205 (A)
  251. Lead-204 (A)
  252. Lead-206 (A)
  253. Lead-207 (A)
  254. Lead-208 (A)
    Bismuth** and above – No stable isotopes
    no mass number 209 and above

Abbreviations for predicted unobserved decay[4][better source needed]:

A for alpha decay, B for beta decay, 2B for double beta decay, E for electron capture, 2E for double electron capture, IT for isomeric transition, SF for spontaneous fission.

* Tantalum-180m is a "metastable isotope" meaning that it is an excited nuclear isomer of tantalum-180. See isotopes of tantalum. However, the half life of this nuclear isomer is so long that it has never been observed to decay, and it thus occurs as an "observationally nonradioactive" primordial nuclide, as a minor isotope of tantalum. This is the only case of a nuclear isomer which has a half life so long that it has never been observed to decay. It is thus included in this list.

** Bismuth-209 had long been believed to be stable, due to its unusually long half-life of over 1.9×1019 years, which is more than a billion (1000 million) times the age of the universe.

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. http://www.nucleonica.net/unc.aspx

Book references

  • Lua error in package.lua at line 80: module 'strict' not found.

External links

sv:Stabil isotop