Tsymmetry
This article includes a list of references, but its sources remain unclear because it has insufficient inline citations. (March 2010)

In theoretical physics, Tsymmetry is the theoretical symmetry of physical laws under a time reversal transformation:
Although in restricted contexts one may find this symmetry, the observable universe itself does not show symmetry under time reversal, primarily due to the second law of thermodynamics. Hence time is said to be nonsymmetric, or asymmetric, except for equilibrium states when the second law of thermodynamics predicts the time symmetry to hold. However, quantum noninvasive measurements are predicted to violate time symmetry even in equilibrium,^{[1]} contrary to their classical counterparts, although it has not yet been experimentally confirmed.
Time asymmetries are generally distinguished as between those intrinsic to the dynamic physical laws, those due to the initial conditions of our universe, and due to measurements
 The Tasymmetry of the weak force is of the first kind,
 The Tasymmetry of the second law of thermodynamics is of the second kind, while
 The Tasymmetry of the noninvasive measurements is of the third kind.
Contents
 1 Invariance
 2 Macroscopic phenomena: the second law of thermodynamics
 3 Macroscopic phenomena: black holes
 4 Kinetic consequences: detailed balance and Onsager reciprocal relations
 5 Effect of time reversal on some variables of classical physics
 6 Microscopic phenomena: time reversal invariance
 7 See also
 8 References
Invariance
Physicists also discuss the timereversal invariance of local and/or macroscopic descriptions of physical systems, independent of the invariance of the underlying microscopic physical laws. For example, Maxwell's equations with material absorption or Newtonian mechanics with friction are not timereversal invariant at the macroscopic level where they are normally applied, even if they are invariant at the microscopic level; when one includes the atomic motions, the "lost" energy is translated into heat.
Macroscopic phenomena: the second law of thermodynamics
Our daily experience shows that Tsymmetry does not hold for the behavior of bulk materials. Of these macroscopic laws, most notable is the second law of thermodynamics. Many other phenomena, such as the relative motion of bodies with friction, or viscous motion of fluids, reduce to this, because the underlying mechanism is the dissipation of usable energy (for example, kinetic energy) into heat.
The question of whether this timeasymmetric dissipation is really inevitable has been considered by many physicists, often in the context of Maxwell's demon. The name comes from a thought experiment described by James Clerk Maxwell in which a microscopic demon guards a gate between two halves of a room. It only lets slow molecules into one half, only fast ones into the other. By eventually making one side of the room cooler than before and the other hotter, it seems to reduce the entropy of the room, and reverse the arrow of time. Many analyses have been made of this; all show that when the entropy of room and demon are taken together, this total entropy does increase. Modern analyses of this problem have taken into account Claude E. Shannon's relation between entropy and information. Many interesting results in modern computing are closely related to this problem — reversible computing, quantum computing and physical limits to computing, are examples. These seemingly metaphysical questions are today, in these ways, slowly being converted to the stuff of the physical sciences.
The current consensus hinges upon the BoltzmannShannon identification of the logarithm of phase space volume with the negative of Shannon information, and hence to entropy. In this notion, a fixed initial state of a macroscopic system corresponds to relatively low entropy because the coordinates of the molecules of the body are constrained. As the system evolves in the presence of dissipation, the molecular coordinates can move into larger volumes of phase space, becoming more uncertain, and thus leading to increase in entropy.
One can, however, equally well imagine a state of the universe in which the motions of all of the particles at one instant were the reverse (strictly, the CPT reverse). Such a state would then evolve in reverse, so presumably entropy would decrease (Loschmidt's paradox). Why is 'our' state preferred over the other?
One position is to say that the constant increase of entropy we observe happens only because of the initial state of our universe. Other possible states of the universe (for example, a universe at heat death equilibrium) would actually result in no increase of entropy. In this view, the apparent Tasymmetry of our universe is a problem in cosmology: why did the universe start with a low entropy? This view, if it remains viable in the light of future cosmological observation, would connect this problem to one of the big open questions beyond the reach of today's physics — the question of initial conditions of the universe.
Macroscopic phenomena: black holes
An object can cross through the event horizon of a black hole from the outside, and then fall rapidly to the central region where our understanding of physics breaks down. Since within a black hole the forward lightcone is directed towards the center and the backward lightcone is directed outward, it is not even possible to define timereversal in the usual manner. The only way anything can escape from a black hole is as Hawking radiation.
The time reversal of a black hole would be a hypothetical object known as a white hole. From the outside they appear similar. While a black hole has a beginning and is inescapable, a white hole has an ending and cannot be entered. The forward lightcones of a white hole are directed outward; and its backward lightcones are directed towards the center.
The event horizon of a black hole may be thought of as a surface moving outward at the local speed of light and is just on the edge between escaping and falling back. The event horizon of a white hole is a surface moving inward at the local speed of light and is just on the edge between being swept outward and succeeding in reaching the center. They are two different kinds of horizons—the horizon of a white hole is like the horizon of a black hole turned insideout.
The modern view of black hole irreversibility is to relate it to the second law of thermodynamics, since black holes are viewed as thermodynamic objects. Indeed, according to the Gauge–gravity duality conjecture, all microscopic processes in a black hole are reversible, and only the collective behavior is irreversible, as in any other macroscopic, thermal system.^{[citation needed]}
Kinetic consequences: detailed balance and Onsager reciprocal relations
In physical and chemical kinetics, Tsymmetry of the mechanical microscopic equations implies two important laws: the principle of detailed balance and the Onsager reciprocal relations. Tsymmetry of the microscopic description together with its kinetic consequences are called microscopic reversibility.
Effect of time reversal on some variables of classical physics
Even
Classical variables that do not change upon time reversal include:
 , Position of a particle in threespace
 , Acceleration of the particle
 , Force on the particle
 , Energy of the particle
 , Electric potential (voltage)
 , Electric field
 , Electric displacement
 , Density of electric charge
 , Electric polarization
 Energy density of the electromagnetic field
 Maxwell stress tensor
 All masses, charges, coupling constants, and other physical constants, except those associated with the weak force.
Odd
Classical variables that time reversal negates include:
 , The time when an event occurs
 , Velocity of a particle
 , Linear momentum of a particle
 , Angular momentum of a particle (both orbital and spin)
 , Electromagnetic vector potential
 , Magnetic induction
 , Magnetic field
 , Density of electric current
 , Magnetization
 , Poynting vector
 Power (rate of work done).
Microscopic phenomena: time reversal invariance
Since most systems are asymmetric under time reversal, it is interesting to ask whether there are phenomena that do have this symmetry. In classical mechanics, a velocity v reverses under the operation of T, but an acceleration does not. Therefore, one models dissipative phenomena through terms that are odd in v. However, delicate experiments in which known sources of dissipation are removed reveal that the laws of mechanics are time reversal invariant. Dissipation itself is originated in the second law of thermodynamics.
The motion of a charged body in a magnetic field, B involves the velocity through the Lorentz force term v×B, and might seem at first to be asymmetric under T. A closer look assures us that B also changes sign under time reversal. This happens because a magnetic field is produced by an electric current, J, which reverses sign under T. Thus, the motion of classical charged particles in electromagnetic fields is also time reversal invariant. (Despite this, it is still useful to consider the timereversal noninvariance in a local sense when the external field is held fixed, as when the magnetooptic effect is analyzed. This allows one to analyze the conditions under which optical phenomena that locally break timereversal, such as Faraday isolators and directional dichroism, can occur.) The laws of gravity also seem to be time reversal invariant in classical mechanics.
In physics one separates the laws of motion, called kinematics, from the laws of force, called dynamics. Following the classical kinematics of Newton's laws of motion, the kinematics of quantum mechanics is built in such a way that it presupposes nothing about the time reversal symmetry of the dynamics. In other words, if the dynamics are invariant, then the kinematics will allow it to remain invariant; if the dynamics is not, then the kinematics will also show this. The structure of the quantum laws of motion are richer, and we examine these next.
Time reversal in quantum mechanics
This section contains a discussion of the three most important properties of time reversal in quantum mechanics; chiefly,
 that it must be represented as an antiunitary operator,
 that it protects nondegenerate quantum states from having an electric dipole moment,
 that it has twodimensional representations with the property T^{2} = −1.
The strangeness of this result is clear if one compares it with parity. If parity transforms a pair of quantum states into each other, then the sum and difference of these two basis states are states of good parity. Time reversal does not behave like this. It seems to violate the theorem that all abelian groups be represented by onedimensional irreducible representations. The reason it does this is that it is represented by an antiunitary operator. It thus opens the way to spinors in quantum mechanics.
Antiunitary representation of time reversal
Eugene Wigner showed that a symmetry operation S of a Hamiltonian is represented, in quantum mechanics either by a unitary operator, S = U, or an antiunitary one, S = UK where U is unitary, and K denotes complex conjugation. These are the only operations that act on Hilbert space so as to preserve the length of the projection of any one statevector onto another statevector.
Consider the parity operator. Acting on the position, it reverses the directions of space, so that P^{−1}xP = −x. Similarly, it reverses the direction of momentum, so that PpP^{−1} = −p, where x and p are the position and momentum operators. This preserves the canonical commutator [x, p] = iħ, where ħ is the reduced Planck constant, only if P is chosen to be unitary, PiP^{−1} = i.
On the other hand, for time reversal, the timecomponent of the momentum is the energy. If time reversal were implemented as a unitary operator, it would reverse the sign of the energy just as spacereversal reverses the sign of the momentum. This is not possible, because, unlike momentum, energy is always positive. Since energy in quantum mechanics is defined as the phase factor exp(iEt) that one gets when one moves forward in time, the way to reverse time while preserving the sign of the energy is to reverse the sense of "i", so that the sense of phases is reversed.
Similarly, any operation that reverses the sense of phase, which changes the sign of i, will turn positive energies into negative energies unless it also changes the direction of time. So every antiunitary symmetry in a theory with positive energy must reverse the direction of time. The only antiunitary symmetry is time reversal, together with a unitary symmetry that does not reverse time.
Given the time reversal operator T, it does nothing to the xoperator, TxT^{−1} = x, but it reverses the direction of p, so that TpT^{−1} = −p. The canonical commutator is invariant only if T is chosen to be antiunitary, i.e., TiT^{−1} = −i. For a particle with spin J, one can use the representation
where J_{y} is the ycomponent of the spin, and use of TJT^{−1} = −J has been made.
Electric dipole moments
This has an interesting consequence on the electric dipole moment (EDM) of any particle. The EDM is defined through the shift in the energy of a state when it is put in an external electric field: Δe = d·E + E·δ·E, where d is called the EDM and δ, the induced dipole moment. One important property of an EDM is that the energy shift due to it changes sign under a parity transformation. However, since d is a vector, its expectation value in a state ψ> must be proportional to <ψ J ψ>. Thus, under time reversal, an invariant state must have vanishing EDM. In other words, a nonvanishing EDM signals both P and T symmetrybreaking.^{[2]}
It is interesting to examine this argument further, since one feels that some molecules, such as water, must have EDM irrespective of whether T is a symmetry. This is correct: if a quantum system has degenerate ground states that transform into each other under parity, then time reversal need not be broken to give EDM.
Experimentally observed bounds on the electric dipole moment of the nucleon currently set stringent limits on the violation of time reversal symmetry in the strong interactions, and their modern theory: quantum chromodynamics. Then, using the CPT invariance of a relativistic quantum field theory, this puts strong bounds on strong CP violation.
Experimental bounds on the electron electric dipole moment also place limits on theories of particle physics and their parameters.^{[3]}^{[4]}
Kramers' theorem
For T, which is an antiunitary Z_{2} symmetry generator

 T^{2} = UKUK = U U^{*} = U (U^{T})^{−1} = Φ,
where Φ is a diagonal matrix of phases. As a result, U = ΦU^{T} and U^{T} = UΦ, showing that

 U = Φ U Φ.
This means that the entries in Φ are ±1, as a result of which one may have either T^{2} = ±1. This is specific to the antiunitarity of T. For a unitary operator, such as the parity, any phase is allowed.
Next, take a Hamiltonian invariant under T. Let a> and Ta> be two quantum states of the same energy. Now, if T^{2} = −1, then one finds that the states are orthogonal: a result called Kramers' theorem. This implies that if T^{2} = −1, then there is a twofold degeneracy in the state. This result in nonrelativistic quantum mechanics presages the spin statistics theorem of quantum field theory.
Quantum states that give unitary representations of time reversal, i.e., have T^{2}=1, are characterized by a multiplicative quantum number, sometimes called the Tparity.
Time reversal transformation for fermions in quantum field theories can be represented by an 8component spinor in which the abovementioned Tparity can be a complex number with unit radius. The CPT invariance is not a theorem but a better to have property in these class of theories.
Time reversal of the known dynamical laws
Particle physics codified the basic laws of dynamics into the standard model. This is formulated as a quantum field theory that has CPT symmetry, i.e., the laws are invariant under simultaneous operation of time reversal, parity and charge conjugation. However, time reversal itself is seen not to be a symmetry (this is usually called CP violation). There are two possible origins of this asymmetry, one through the mixing of different flavours of quarks in their weak decays, the second through a direct CP violation in strong interactions. The first is seen in experiments, the second is strongly constrained by the nonobservation of the EDM of a neutron.
It is important to stress that this time reversal violation is unrelated to the second law of thermodynamics, because due to the conservation of the CPT symmetry, the effect of time reversal is to rename particles as antiparticles and vice versa. Thus the second law of thermodynamics is thought to originate in the initial conditions in the universe.
Time reversal of noninvasive measurements
Strong measurements (both classical and quantum) are certainly disturbing, causing asymmetry due to second law of thermodynamics. However, noninvasive measurements should not disturb the evolution so they are expected to be timesymmetric. Surprisingly, it is true only in classical physics but not quantum, even in a thermodynamically invariant equilibrium state. ^{[1]} This type of asymmetry is independent of CPT symmetry but has not yet been confirmed experimentally due to extreme conditions of the checking proposal.
See also
 The second law of thermodynamics, Maxwell's demon and the arrow of time (also Loschmidt's paradox).
 Microscopic reversibility
 Detailed balance
 Applications to reversible computing and quantum computing, including limits to computing.
 The standard model of particle physics, CP violation, the CKM matrix and the strong CP problem
 Neutrino masses and CPT invariance.
 Wheeler–Feynman absorber theory
 Teleonomy
References
 ↑ ^{1.0} ^{1.1} Bednorz, Adam; Franke, Kurt; Belzig, Wolfgang (February 2013). "Noninvasiveness and time symmetry of weak measurements". New Journal of Physics. 15: 023043. Bibcode:2013NJPh...15b3043B. doi:10.1088/13672630/15/2/023043.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
 ↑ Khriplovich, Iosip B.; Lamoreaux, Steve K. (2012). CP violation without strangeness : electric dipole moments of particles, atoms, and molecules. [S.l.]: Springer. ISBN 9783642645778.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
 ↑ Ibrahim, Tarik; Itani, Ahmad; Nath, Pran (12 Aug 2014). "Electron EDM as a Sensitive Probe of PeV Scale Physics". arXiv: 1406.0083.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
 ↑ Kim, Jihn E.; Carosi, Gianpaolo (4 March 2010). "Axions and the strong CP problem". Reviews of Modern Physics. 82: 557. arXiv:0807.3125. Bibcode:2010RvMP...82..557K. doi:10.1103/RevModPhys.82.557.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
 Maxwell's demon: entropy, information, computing, edited by H.S.Leff and A.F. Rex (IOP publishing, 1990) ISBN 0750300574
 Maxwell's demon, 2: entropy, classical and quantum information, edited by H.S.Leff and A.F. Rex (IOP publishing, 2003) ISBN 0750307595
 The emperor's new mind: concerning computers, minds, and the laws of physics, by Roger Penrose (Oxford university press, 2002) ISBN 0192861980
 Sozzi, M.S. (2008). Discrete symmetries and CP violation. Oxford University Press. ISBN 9780199296668.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
 Birss, R. R. (1964). Symmetry and Magnetism. John Wiley & Sons, Inc., New York.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
 Multiferroic materials with timereversal breaking optical properties
 CP violation, by I.I. Bigi and A.I. Sanda (Cambridge University Press, 2000) ISBN 0521443490
 Particle Data Group on CP violation