Web design

From Infogalactic: the planetary knowledge core
Jump to: navigation, search


Web design encompasses many different skills and disciplines in the production and maintenance of websites. The different areas of web design include web graphic design; interface design; authoring, including standardised code and proprietary software; user experience design; and search engine optimization. Often many individuals will work in teams covering different aspects of the design process, although some designers will cover them all.[1] The term web design is normally used to describe the design process relating to the front-end (client side) design of a website including writing mark up. Web design partially overlaps web engineering in the broader scope of web development. Web designers are expected to have an awareness of usability and if their role involves creating mark up then they are also expected to be up to date with web accessibility guidelines.

History

Web design books in a store

1988—2001

Although web design has a fairly recent history, it can be linked to other areas such as graphic design. However web design can also be seen from a technological standpoint. It has become a large part of people’s everyday lives. It is hard to imagine the Internet without animated graphics, different styles of typography, background and music.

The start of the web and web design

In 1989, whilst working at CERN Tim Berners-Lee proposed to create a global hypertext project, which later became known as the World Wide Web. During 1991 to 1993 the World Wide Web was born. Text-only pages could be viewed using a simple line-mode browser.[2] In 1993 Marc Andreessen and Eric Bina, created the Mosaic browser. At the time there were multiple browsers, however the majority of them were Unix-based and naturally text heavy. There had been no integrated approach to graphic design elements such as images or sounds. The Mosaic browser broke this mould.[3] The W3C was created in October 1994 to "lead the World Wide Web to its full potential by developing common protocols that promote its evolution and ensure its interoperability."[4] This discouraged any one company from monopolizing a propriety browser and programming language, which could have altered the effect of the World Wide Web as a whole. The W3C continues to set standards, which can today be seen with JavaScript. In 1994 Andreessen formed Communications Corp. that later became known as Netscape Communications, the Netscape 0.9 browser. Netscape created its own HTML tags without regard to the traditional standards process. For example, Netscape 1.1 included tags for changing background colours and formatting text with tables on web pages. Throughout 1996 to 1999 the browser wars began, as Microsoft and Netscape fought for ultimate browser dominance. During this time there were many new technologies in the field, notably Cascading Style Sheets, JavaScript, and Dynamic HTML. On the whole, the browser competition did lead to many positive creations and helped web design evolve at a rapid pace.[5]

Evolution of web design

In 1996, Microsoft released its first competitive browser, which was complete with its own features and tags. It was also the first browser to support style sheets, which at the time was seen as an obscure authoring technique.[5] The HTML markup for tables was originally intended for displaying tabular data. However designers quickly realized the potential of using HTML tables for creating the complex, multi-column layouts that were otherwise not possible. At this time, as design and good aesthetics seemed to take precedence over good mark-up structure, and little attention was paid to semantics and web accessibility. HTML sites were limited in their design options, even more so with earlier versions of HTML. To create complex designs, many web designers had to use complicated table structures or even use blank spacer .GIF images to stop empty table cells from collapsing.[6] CSS was introduced in December 1996 by the W3C to support presentation and layout. This allowed HTML code to be semantic rather than both semantic and presentational, and improved web accessibility, see tableless web design.

In 1996, Flash (originally known as FutureSplash) was developed. At the time, the Flash content development tool was relatively simple compared to now, using basic layout and drawing tools, a limited precursor to ActionScript, and a timeline, but it enabled web designers to go beyond the point of HTML, animated GIFs and JavaScript. However, because Flash required a plug-in, many web developers avoided using it for fear of limiting their market share due to lack of compatibility. Instead, designers reverted to gif animations (if they didn't forego using motion graphics altogether) and JavaScript for widgets. But the benefits of Flash made it popular enough among specific target markets to eventually work its way to the vast majority of browsers, and powerful enough to be used to develop entire sites.[6]

End of the first browser wars

During 1998 Netscape released Netscape Communicator code under an open source licence, enabling thousands of developers to participate in improving the software. However, they decided to start from the beginning, which guided the development of the open source browser and soon expanded to a complete application platform.[5] The Web Standards Project was formed and promoted browser compliance with HTML and CSS standards by creating Acid1, Acid2, and Acid3 tests. 2000 was a big year for Microsoft. Internet Explorer was released for Mac; this was significant as it was the first browser that fully supported HTML 4.01 and CSS 1, raising the bar in terms of standards compliance. It was also the first browser to fully support the PNG image format.[5] During this time Netscape was sold to AOL and this was seen as Netscape’s official loss to Microsoft in the browser wars.[5]

2001—2012

Since the start of the 21st century the web has become more and more integrated into peoples lives. As this has happened the technology of the web has also moved on. There have also been significant changes in the way people use and access the web, and this has changed how sites are designed.

Modern browsers

Since the end of the browsers wars there have been new browsers coming onto the scene. Many of these are open source meaning that they tend to have faster development and are more supportive of new standards. The new options are considered by many to be better than Microsoft's Internet Explorer.

New standards

The W3C has released new standards for HTML (HTML5) and CSS (CSS3), as well as new JavaScript API's, each as a new but individual standard. However, while the term HTML5 is only used to refer to the new version of HTML and some of the JavaScript API's, it has become common to use it to refer to the entire suite of new standards (HTML5, CSS3 and JavaScript).

Tools and technologies

Web designers use a variety of different tools depending on what part of the production process they are involved in. These tools are updated over time by newer standards and software but the principles behind them remain the same. Web graphic designers use vector and raster graphics packages to create web-formatted imagery or design prototypes. Technologies used to create websites include standardised mark-up, which can be hand-coded or generated by WYSIWYG editing software. There is also proprietary software based on plug-ins that bypasses the client’s browser versions. These are often WYSIWYG but with the option of using the software’s scripting language. Search engine optimisation tools may be used to check search engine ranking and suggest improvements.

Other tools web designers might use include mark up validators[7] and other testing tools for usability and accessibility to ensure their web sites meet web accessibility guidelines.[8]

Skills and techniques

Marketing and communication design

Marketing and communication design on a website may identify what works for its target market. This can be an age group or particular strand of culture; thus the designer may understand the trends of its audience. Designers may also understand the type of website they are designing, meaning, for example, that (B2B) business-to-business website design considerations might differ greatly from a consumer targeted website such as a retail or entertainment website. Careful consideration might be made to ensure that the aesthetics or overall design of a site do not clash with the clarity and accuracy of the content or the ease of web navigation,[9] especially on a B2B website. Designers may also consider the reputation of the owner or business the site is representing to make sure they are portrayed favourably.

User experience design and interactive design

User understanding of the content of a website often depends on user understanding of how the website works. This is part of the user experience design. User experience is related to layout, clear instructions and labeling on a website. How well a user understands how they can interact on a site may also depend on the interactive design of the site. If a user perceives the usefulness of the website, they are more likely to continue using it. Users who are skilled and well versed with website use may find a more unique, yet less intuitive or less user-friendly website interface useful nonetheless. However, users with less experience are less likely to see the advantages or usefulness of a less intuitive website interface. This drives the trend for a more universal user experience and ease of access to accommodate as many users as possible regardless of user skill.[10] Much of the user experience design and interactive design are considered in the user interface design.

Advanced interactive functions may require plug-ins if not advanced coding language skills. Choosing whether or not to use interactivity that requires plug-ins is a critical decision in user experience design. If the plug-in doesn't come pre-installed with most browsers, there's a risk that the user will have neither the know how or the patience to install a plug-in just to access the content. If the function requires advanced coding language skills, it may be too costly in either time or money to code compared to the amount of enhancement the function will add to the user experience. There's also a risk that advanced interactivity may be incompatible with older browsers or hardware configurations. Publishing a function that doesn't work reliably is potentially worse for the user experience than making no attempt. It depends on the target audience if it's likely to be needed or worth any risks.

A study by Longo et. al [11] introduced the construct of Human Mental Workload (HMW) in Web design, aimed at supporting current interaction design practices. An experiment has been conducted using the original Wikipedia and Google web-interfaces, and using two slightly different versions. Three subjective psychological mental workload assessment techniques (NASA-TLX, Workload Profile and Subjective Workload Assessment Technique) with a well-established assessments usability tool (System Usability Scale) have been adopted. T-tests have been performed to study the statistical significance of the original and modified web-pages, in terms of workload required by typical tasks and perceived usability. Preliminary results show that, in one ideal case, increments of usability correspond to decrements of generated workload, confirming the negative impact of the structural changes on the interface. In another case, changes are significant in terms of usability but not in terms of generated workloads, thus raising research questions and underlying the importance of Human Mental Workload in Interaction Design.

Another research conducted by Longo et al. (2012) [12] introduced the concept of mental Workload [13] as an aid to enhance usability measurement. A user-study has been designed and executed in the context of human-web interaction. The aim was to investigate the relationship between the perception of usability of three popular web-sites, and the mental workload imposed by a set of typical tasks executed over them. Scores obtained with the System usability scale were compared to the mental workload scores obtained from the NASA-TLX and the Workload Profile assessment procedures. Findings suggest that perception of usability and mental workload are likely to be two non-overlapping constructs, and there is no clear evidence of their interaction. They measure two different aspects of human-system interaction and therefore they could be jointly employed to better describe user experience.

Page layout

Part of the user interface design is affected by the quality of the page layout. For example, a designer may consider whether the site's page layout should remain consistent on different pages when designing the layout. Page pixel width may also be considered vital for aligning objects in the layout design. The most popular fixed-width websites generally have the same set width to match the current most popular browser window, at the current most popular screen resolution, on the current most popular monitor size. Most pages are also center-aligned for concerns of aesthetics on larger screens.[14]

Fluid layouts increased in popularity around 2000 as an alternative to HTML-table-based layouts and grid-based design in both page layout design principle and in coding technique, but were very slow to be adopted.[note 1] This was due to considerations of screen reading devices and varying windows sizes which designers have no control over. Accordingly, a design may be broken down into units (sidebars, content blocks, embedded advertising areas, navigation areas) that are sent to the browser and which will be fitted into the display window by the browser, as best it can. As the browser does recognize the details of the reader's screen (window size, font size relative to window etc.) the browser can make user-specific layout adjustments to fluid layouts, but not fixed-width layouts. Although such a display may often change the relative position of major content units, sidebars may be displaced below body text rather than to the side of it. This is a more flexible display than a hard-coded grid-based layout that doesn't fit the device window. In particular, the relative position of content blocks may change while leaving the content within the block unaffected. This also minimizes the user's need to horizontally scroll the page.

Responsive Web Design is a newer approach, based on CSS3, and a deeper level of per-device specification within the page's stylesheet through an enhanced use of the CSS @media rule.

Typography

Web designers may choose to limit the variety of website typefaces to only a few which are of a similar style, instead of using a wide range of typefaces or type styles. Most browsers recognize a specific number of safe fonts, which designers mainly use in order to avoid complications.

Font downloading was later included in the CSS3 fonts module and has since been implemented in Safari 3.1, Opera 10 and Mozilla Firefox 3.5. This has subsequently increased interest in web typography, as well as the usage of font downloading.

Most site layouts incorporate negative space to break the text up into paragraphs and also avoid center-aligned text.[15]

Motion graphics

The page layout and user interface may also be affected by the use of motion graphics. The choice of whether or not to use motion graphics may depend on the target market for the website. Motion graphics may be expected or at least better received with an entertainment-oriented website. However, a website target audience with a more serious or formal interest (such as business, community, or government) might find animations unnecessary and distracting if only for entertainment or decoration purposes. This doesn't mean that more serious content couldn't be enhanced with animated or video presentations that is relevant to the content. In either case, motion graphic design may make the difference between more effective visuals or distracting visuals.

Motion graphics that are not initiated by the site visitor can produce accessibility issues. The World Wide Web consortium accessibility standards require that site visitors be able to disable the animations. [16]

Quality of code

Website designers may consider it to be good practice to conform to standards. This is usually done via a description specifying what the element is doing. Failure to conform to standards may not make a website unusable or error prone, but standards can relate to the correct layout of pages for readability as well making sure coded elements are closed appropriately. This includes errors in code, more organized layout for code, and making sure IDs and classes are identified properly. Poorly-coded pages are sometimes colloquially called tag soup. Validating via W3C[7] can only be done when a correct DOCTYPE declaration is made, which is used to highlight errors in code. The system identifies the errors and areas that do not conform to web design standards. This information can then be corrected by the user.[17]

Homepage design

Usability experts, including Jakob Nielsen and Kyle Soucy, have often emphasised homepage design for website success and asserted that the homepage is the most important page on a website.[18][19][20][21] However practitioners into the 2000s were starting to find that a growing number of website traffic was bypassing the homepage, going directly to internal content pages through search engines, e-newsletters and RSS feeds.[22] Leading many practitioners to argue that homepages are less important than most people think.[23][24][25][26] Jared Spool argued in 2007 that a site's homepage was actually the least important page on a website.[27]

In 2012 and 2013, carousels (also called 'sliders' and 'rotating banners') have become an extremely popular design element on homepages, often used to showcase featured or recent content in a confined space.[28][29] Many practitioners argue that carousels are an ineffective design element and hurt a website's search engine optimisation and usability.[29][30][31]

Occupations

There are two primary jobs involved in creating a website: the web designer and web developer, who often work closely together on a website.[32] The web designers are responsible for the visual aspect, which includes the layout, coloring and typography of a web page. Web designers will also have a working knowledge of using a variety of languages such as HTML, CSS, JavaScript, PHP and Flash to create a site, although the extent of their knowledge will differ from one web designer to another. Particularly in smaller organizations one person will need the necessary skills for designing and programming the full web page, while larger organizations may have a web designer responsible for the visual aspect alone.[33]

Further jobs which may become involved in the creation of a website include:

  • Graphic designers to create visuals for the site such as logos, layouts and buttons
  • Internet marketing specialists to help maintain web presence through strategic solutions on targeting viewers to the site, by using marketing and promotional techniques on the internet
  • SEO writers to research and recommend the correct words to be incorporated into a particular website and make the website more accessible and found on numerous search engines
  • Internet copywriter to create the written content of the page to appeal to the targeted viewers of the site[1]
  • User experience (UX) designer incorporates aspects of user focused design considerations which include information architecture, user centered design, user testing, interaction design, and occasionally visual design.

See also

See also

Related disciplines

Notes

  1. <table>-based markup and spacer .GIF images
  1. 1.0 1.1 Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. 5.0 5.1 5.2 5.3 5.4 Lua error in package.lua at line 80: module 'strict' not found. Cite error: Invalid <ref> tag; name "Browsers" defined multiple times with different content
  6. 6.0 6.1 Lua error in package.lua at line 80: module 'strict' not found.
  7. 7.0 7.1 Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Longo,L., Dondio, P. (2015). On the relationship between perception of usability and subjective mental workload of web-interfaces. 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Singapore, December 6-9, 2015 - pp.
  12. Longo,L. et al. (2012). The importance of human mental workload in web-design. WEBIST 2012 - Proceedings of the 8th International Conference on Web Information Systems and Technologies, Porto, Portugal, 18-21 April, 2012 pp. 403-409
  13. Longo,L.. (2014). Formalising human mental workload as a defeasible computational concept. Ph.D. Thesis. 2014, The University of Dublin, Trinity College: Ireland.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. World Wide Web Consortium: Understanding Web Content Accessibility Guidelines 2.2.2: Pause, Stop, Hide
  17. Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. Nielsen & Tahir 2001.
  20. Lua error in package.lua at line 80: module 'strict' not found.
  21. Lua error in package.lua at line 80: module 'strict' not found.
  22. Lua error in package.lua at line 80: module 'strict' not found.
  23. Lua error in package.lua at line 80: module 'strict' not found.
  24. Lua error in package.lua at line 80: module 'strict' not found.
  25. Lua error in package.lua at line 80: module 'strict' not found.
  26. Lua error in package.lua at line 80: module 'strict' not found.
  27. Lua error in package.lua at line 80: module 'strict' not found.
  28. Lua error in package.lua at line 80: module 'strict' not found.
  29. 29.0 29.1 Lua error in package.lua at line 80: module 'strict' not found.
  30. Lua error in package.lua at line 80: module 'strict' not found.
  31. Lua error in package.lua at line 80: module 'strict' not found.
  32. Lua error in package.lua at line 80: module 'strict' not found.
  33. Lua error in package.lua at line 80: module 'strict' not found.

References and further reading

  • Lua error in package.lua at line 80: module 'strict' not found.

External links