Conotoxin

From Infogalactic: the planetary knowledge core
(Redirected from Ω-Conotoxin)
Jump to: navigation, search
Alpha conotoxin precursor
Alpha-Conotoxin from Conus pennaceus 1AKG.png
α-Conotoxin PnIB from C. pennaceus, disulfide bonds shown in yellow. From the University of Michigan's Orientations of Proteins in Membranes database, PDB: 1AKG​.
Identifiers
Symbol Toxin_8
Pfam PF07365
InterPro IPR009958
PROSITE PDOC60004
SCOP 1mii
SUPERFAMILY 1mii
OPM superfamily 157
OPM protein 1akg
Omega conotoxin
Ziconotide 1DW5.png
Schematic diagram of the three-dimensional structure of ω-conotoxin MVIIA (ziconotide). Disulfide bonds are shown in gold. From PDB: 1DW5​.
Identifiers
Symbol Conotoxin
Pfam PF02950
InterPro IPR004214
SCOP 2cco
SUPERFAMILY 2cco
OPM superfamily 120
OPM protein 1fyg

A conotoxin is one of a group of neurotoxic peptides isolated from the venom of the marine cone snail, genus Conus.

Conotoxins, which are peptides consisting of 10 to 30 amino acid residues, typically have one or more disulfide bonds. Conotoxins have a variety of mechanisms of actions, most of which have not been determined. However, it appears that many of these peptides modulate the activity of ion channels.[1] Over the last few decades conotoxins have been subject of pharmacological interest.[2]

Hypervariability

Conotoxins are hypervariable even within the same species; the genes that encode them do not act endogenously,[3] and thus are less conserved and more likely to experience gene duplication events and nonsynonymous mutations which lead to the development of novel functions.[4] These genes will experience less selection against mutations, and therefore mutations will remain in the genome longer, allowing more time for potentially beneficial novel functions to arise.[5] Variability in conotoxin components reduces the likelihood that prey organisms will develop resistance; thus cone snails are under constant selective pressure to maintain polymorphism in these genes because failing to evolve and adapt will lead to extinction (Red Queen hypothesis).[6]

Disulfide connectivities

Types of conotoxins also differ in the number and pattern of disulfide bonds.[7] The disulfide bonding network, as well as specific amino acids in inter-cysteine loops, provide the specificity of conotoxins.[8]

Types and biological activities

The number of conotoxins whose activities have been determined so far is five, and they are called the α(alpha)-, δ(delta)-, κ(kappa)-, μ(mu)-, and ω(omega)- types. Each of the five types of conotoxins attacks a different target:

Alpha

Alpha conotoxins have two types of cysteine arrangements,[16] and are competitive nicotinic acetylcholine receptor antagonists.

Delta and kappa, and omega

Omega, delta and kappa families of conotoxins have a knottin or inhibitor cystine knot scaffold. The knottin scaffold is a very special disulfide-through-disulfide knot, in which the III-VI disulfide bond crosses the macrocycle formed by two other disulfide bonds (I-IV and II-V) and the interconnecting backbone segments, where I-VI indicates the six cysteine residues starting from the N-terminus. The cysteine arrangements are the same for omega, delta and kappa families, even though omega conotoxins are calcium channel blockers, whereas delta conotoxins delay the inactivation of sodium channels, and kappa conotoxins are potassium channel blockers.[7]

Mu

Mu-conotoxin
PDB 1r9i EBI.jpg
nmr solution structure of piiia toxin, nmr, 20 structures
Identifiers
Symbol Mu-conotoxin
Pfam PF05374
Pfam clan CL0083
InterPro IPR008036
SCOP 1gib
SUPERFAMILY 1gib
OPM superfamily 120
OPM protein 1ag7

Mu-conotoxins have two types of cysteine arrangements, but the knottin scaffold is not observed.[17] Mu-conotoxins target the muscle-specific voltage-gated sodium channels,[7] and are useful probes for investigating voltage-dependent sodium channels of excitable tissues.[17][18] Mu-conotoxins target the voltage-gated sodium channels, preferentially those of skeletal muscle,[19] and are useful probes for investigating voltage-dependent sodium channels of excitable tissues.[20]

Different subtypes of voltage-gated sodium channels are found in different tissues in mammals, e.g., in muscle and brain, and studies have been carried out to determine the sensitivity and specificity of the mu-conotoxins for the different isoforms.[21]

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. 7.0 7.1 7.2 Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. Lua error in package.lua at line 80: module 'strict' not found.
  17. 17.0 17.1 Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.
  20. Lua error in package.lua at line 80: module 'strict' not found.
  21. Lua error in package.lua at line 80: module 'strict' not found.


External links

  • Conotoxins at the US National Library of Medicine Medical Subject Headings (MeSH)
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.

This article incorporates text from the public domain Pfam and InterPro IPR004214 This article incorporates text from the public domain Pfam and InterPro IPR008036