Aggrecan

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

<templatestyles src="Module:Infobox/styles.css"></templatestyles>

Aggrecan
250px
PDB rendering based on 1tdq.
Identifiers
Symbols ACAN ; AGC1; AGCAN; CSPG1; CSPGCP; MSK16; SEDK
External IDs OMIM155760 HomoloGene136177 GeneCards: ACAN Gene
RNA expression pattern
File:PBB GE ACAN 207692 s at tn.png
File:PBB GE ACAN 205679 x at tn.png
File:PBB GE ACAN 217161 x at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 176 11595
Ensembl ENSG00000157766 ENSMUSG00000030607
UniProt P16112 Q61282
RefSeq (mRNA) NM_001135 NM_007424
RefSeq (protein) NP_001126 NP_031450
Location (UCSC) Chr 15:
88.8 – 88.88 Mb
Chr 7:
79.05 – 79.12 Mb
PubMed search [1] [2]

Aggrecan, also known as cartilage-specific proteoglycan core protein (CSPCP) or chondroitin sulfate proteoglycan 1, is a protein that in humans is encoded by the ACAN gene.[1] This gene is a member of the lectican (chondroitin sulfate proteoglycan) family. The encoded protein is an integral part of the extracellular matrix in cartilagenous tissue and it withstands compression in cartilage.

Aggrecan is a proteoglycan, or a protein modified with large carbohydrates; the human form of the protein is 2316 amino acids long and can be expressed in multiple isoforms due to alternative splicing.[1]

Structure

Aggrecan is a high molecular weight (1x106 < M < 3x106) proteoglycan. It exhibits a bottlebrush structure, in which chondroitin sulfate and keratan sulfate glycosaminoglycan (GAG) chains are attached to an extended protein core.[2]

Aggrecan has a molecular mass >2,500 kDa.[citation needed] The core protein (210–250 kDa) has 100–150 GAG chains attached to it.

Aggrecan consists of two globular structural domains (G1 and G2) at the N-terminal end and one globular domain (G3) at the C-terminal end, separated by a large extended domain (CS) heavily modified with GAGs. (N-G1-G2-CS-G3-C) The two main modifier moieties are themselves arranged into distinct regions, a chondroitin sulfate and a keratan sulfate region.

The three globular domains, G1, G2, and G3 are involved in aggregation, hyaluronan binding, cell adhesion, and chondrocyte apoptosis.

Along with type-II collagen, aggrecan forms a major structural component of cartilage, particularly articular cartilage.

The aggrecan family includes other important members such as versican, also named PG-M, neurocan, brevican and the cell surface HA receptor CD44. They are modular proteoglycans containing combinations of structural motifs, such as EGF-like domains, carbohydrate recognition domains (CRD), complement binding protein (CBP)-like domains, immunoglobulin folds and proteoglycan tandem repeats.

Function

Aggrecan is a critical component for cartilage structure and the function of joints.

Functionally, the G1 domain interacts with hyaluronan acid and link protein, forming stable ternary complexes in the extracellular matrix. G2 is homologous to the tandem repeats of G1 and of link protein and is involved in product processing. G3 makes up the carboxyl terminus of the core protein. It enhances glycosaminoglycan modification and product secretion. Aggrecan plays an important role in mediating chondrocyte-chondrocyte and chondrocyte-matrix interactions through its ability to bind hyaluronan.[3]

Aggrecan provides intervertebral disc and cartilage with the ability to resist compressive loads. The localized high concentrations of aggrecan provide the osmotic properties necessary for normal tissue function with the GAGs producing the swelling pressure that counters compressive loads on the tissue. This functional ability is dependent on a high GAG/aggrecan concentration being present in the tissue extracellular matrix.[4] In the disc, aggrecan concentrations peak in a person's twenties, and decline thereafter, with aggrecan degradation products slowly accumulating over the following decades.[5] This causes discs to get stiffer and less resilient with age.

Aggrecan also plays an important role in the organization of the extracellular spaces between neurons in the brain.[6] Through interactions with link protein and tenascins, aggrecan binds to hyaluronan, forming large aggregated complexes at the cell surface.

Clinical significance

The synthesis and degradation of aggrecan are being investigated for their roles in cartilage deterioration during joint injury, disease, and aging.

The linker domain between the N-terminal globular domains, called the interglobular domain, is highly sensitive to proteolysis. Such degradation has been associated with the development of arthritis. Proteases capable of degrading aggrecans are called aggrecanases, and they are members of the ADAM (A Disintegrin And Metalloprotease) protein family.[7]

Degenerative joint disease is a leading source of morbidity resulting in significant social and economic impact. Osteoarthritis is characterized by the slow progressive deterioration of articular cartilage and fibrosis of the synovium and joint capsule. Articular cartilage contains up to 10% proteoglycan by weight, most of which is aggrecan, and its loss is an early sign of the disease.

References

  1. 1.0 1.1 Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.

Further reading

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.

External links