Agmatine

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Agmatine
Skeletal formula of an agmatine minor tautomer
Names
IUPAC name
1-(4-Aminobutyl)guanidine[1]
Identifiers
306-60-5M N
3DMet B00052
ChEBI CHEBI:17431 YesY
ChEMBL ChEMBL58343 YesY
ChemSpider 194 YesY
EC Number 206-187-7
Jmol 3D model Interactive image
Interactive image
KEGG C00179 N
MeSH Agmatine
PubChem 199
  • InChI=1S/C5H14N4/c6-3-1-2-4-9-5(7)8/h1-4,6H2,(H4,7,8,9) YesY
    Key: QYPPJABKJHAVHS-UHFFFAOYSA-N YesY
  • NCCCC[nH]:c(:[nH]):[nH2]
  • NCCCCNC(N)=N
Properties
C5H14N4
Molar mass 130.20 g·mol−1
Density 1.2 g/ml
Melting point 102 °C (216 °F; 375 K)
Boiling point 281 °C (538 °F; 554 K)
high
log P −1.423
Basicity (pKb) 0.52
Vapor pressure {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Agmatine, also known as (4-aminobutyl)guanidine, is an aminoguanidine that was discovered in 1910 by Albrecht Kossel.[2] It is a common natural compound synthesized by decarboxylation of the amino acid arginine, hence also known as decarboxylated arginine.

Agmatine has been shown to exert modulatory action at multiple molecular targets, notably: neurotransmitter systems, key ion channels, nitric oxide (NO) synthesis and polyamine metabolism, thus providing bases for further research into potential applications.

History

The term "agmatin" (German) was coined in 1910 by Albrecht Kossel who first identified the substance in herring sperm.[2] Most probably the term stems from A- (for amino-) + g- (from guanidine) + -ma- (from ptomaine) + -in (German)/-ine (English) suffix with insertion of -t- apparently for euphony.[3] Within a year following its discovery agmatine has been found to increase blood flow in rabbits,[4] but the physiological relevance of these findings was questioned given the high concentrations (high µM range) required.[5] In the 1920s, researchers in the diabetes clinic of Oskar Minkowski have shown that agmatine can exert mild hypoglycemic effects.[6] In 1994, the discovery of endogenous agmatine synthesis in mammals[7] has revived research in the field.

Metabolic pathways

Agmatine Metabolic Pathways

Agmatine biosynthesis by arginine decarboxylation is well-positioned to compete with the principal arginine-dependent pathways, namely: nitrogen metabolism (urea cycle), and polyamine and nitric oxide (NO) synthesis (see illustration 'Agmatine Metabolic Pathways'). Agmatine degradation occurs mainly by hydrolysis, catalyzed by agmatinase into urea and putrescine, the diamine precursor of polyamine biosynthesis. An alternative pathway, mainly in peripheral tissues, is by diamine oxidase-catalyzed oxidation into agmatine-aldehyde, which is in turn converted by aldehyde dehydrogenase into guanidinobutyrate and secreted by the kidneys.

Mechanisms of action

Agmatine was found to exert modulatory actions directly and/or indirectly at multiple key molecular targets underlying cellular control mechanisms of cardinal importance in health and disease. It is considered capable of exerting its modulatory actions simultaneously at multiple targets.[8] The following outline indicates the categories of control mechanisms and identifies their molecular targets:

  • Neurotransmitter receptors and receptor ionophores. Nicotinic, imidazoline I1 and I2, α2- adrenergic, glutamate NMDAr, and serotonin 5-HT2A and 5HT-3 receptors.
  • Ion channels. Including: ATP-sensitive K+ channels, voltage-gated Ca2+ channels, and acid-sensing ion channels (ASICs).
  • Membrane transporters. Agmatine specific-selective uptake sites, organic cation transporters (mostly OCT2 subtype), extraneuronal monoamine transporters (ENT), polyamine transporters, and mitochondrial agmatine specific-selective transport system.
  • Nitric oxide (NO) synthesis modulation. Differential inhibition by agmatine of all isoforms of NO synthase (NOS) is reported.
  • Polyamine metabolism. Agmatine is a precursor for polyamine synthesis, competitive inhibitor of polyamine transport, inducer of spermidine/spermine acetyltransferase (SSAT), and inducer of antizyme.
  • Protein ADP-ribosylation. Inhibition of protein arginine ADP-ribosylation.
  • Matrix metalloproteases (MMPs). Indirect down-regulation of the enzymes MMP 2 and 9.
  • Advanced glycation end product (AGE) formation. Direct blockade of AGEs formation.
  • NADPH oxidase. Activation of the enzyme leading to H2O2 production.[9]

Food consumption

Agmatine sulfate injection can increase food intake with carbohydrate preference in satiated, but not in hungry rats and this effect may be mediated by neuropeptide.[10] However, supplementation in rat drinking water results in reductions in water intake and body weight gain.[11] Also force feeding with agmatine leads to a reduction in body weight gain during rat development.[12]

Pharmacology

Agmatine is present in small amounts in plant-, animal-, and fish-derived foodstuff and Gut microbial production is an added source for agmatine. Oral agmatine is absorbed from the gastrointestinal tract and readily distributed throughout the body.[13] Rapid elimination of ingested (un-metabolized) agmatine by the kidneys has indicated a blood half life of about 2 hours.[14]

Agmatine sulfate supplements have been marketed for several years now to the bodybuilding channel, touting muscle-building qualities, although using completely unsubstantiated claims.

Research

A number of potential medical uses for agmatine have been suggested.[15]

Cardiovascular

Agmatine produces mild reductions in heart rate and blood pressure, apparently by activating both central and peripheral control systems via modulation of several of its molecular targets including: imidazoline receptors subtypes, norepinephrine release and NO production.[16]

Glucose regulation

Agmatine hypoglycemic effects are the result of simultaneous modulation of several molecular mechanisms involved in blood glucose regulation.[8]

Kidney functions

Agmatine has been shown to enhance glomerular filtration rate (GFR) and to exert nephroprotective effects.[17]

Neurotransmission

Agmatine has been discussed as a putative neurotransmitter/neuromodulator. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to α2-adrenergic receptor and imidazoline receptor binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Short only of identifying specific ("own") post-synaptic receptors, agmatine in fact, fulfills Henry Dale's criteria for a neurotransmitter and is hence, considered a neuromodulator and co-transmitter. But identification of agmatinergic neuronal systems, if exist, still awaits future research.[8]

Opioid liability

Systemic agmatine can potentiate opioid analgesia and prevent tolerance to chronic morphine in laboratory rodents. Since then, cumulative evidence amply shows that agmatine inhibits opioid dependence and relapse in several animal species.[18]

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. 2.0 2.1 Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found. (Subscription or UK public library membership required.)
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. 8.0 8.1 8.2 Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. Lua error in package.lua at line 80: module 'strict' not found.
  17. Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.

Further reading

  • Lua error in package.lua at line 80: module 'strict' not found.