Audio power amplifier

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Audio stereo power amplifier made by Unitra
The inside of a Mission Cyrus 1 Hi Fi integrated audio amplifier (1984)[1]

An audio power amplifier is an electronic amplifier that amplifies low-power audio signals (signals composed primarily of frequencies between 20 - 20 000 Hz, the human range of hearing) to a level suitable for driving loudspeakers. It is the final electronic stage in a typical audio playback chain.

The preceding stages in such a chain are low power audio amplifiers which perform tasks like pre-amplification (this is particularly associated with record turntable signals), equalization, tone controls, mixing/effects, or audio sources like record players, CD players, and cassette players. Most audio power amplifiers require these low-level inputs to adhere to line levels.

While the input signal to an audio power amplifier may measure only a few hundred microwatts, its output may be tens or hundreds of watts for a home stereo system or thousands or tens of thousands of watts for a concert sound reinforcement system.

History

Three rack-mounted audio power amplifiers

The audio amplifier was invented in 1909 by Lee De Forest when he invented the triode vacuum tube. The triode was a three terminal device with a control grid that can modulate the flow of electrons from the filament to the plate. The triode vacuum amplifier was used to make the first AM radio.[2]

Early audio power amplifiers were based on vacuum tubes (also known as valves), and some of these achieved notably high quality (e.g., the Williamson amplifier of 1947-9). Most modern audio amplifiers are based on solid state devices (transistors such as BJTs, FETs and MOSFETs), but there are still some who prefer tube-based amplifiers, and the valve sound. Audio power amplifiers based on transistors became practical with the wide availability of inexpensive transistors in the late 1960s.

Design parameters

Key design parameters for audio power amplifiers are frequency response, gain, noise, and distortion. These are interdependent; increasing gain often leads to undesirable increases in noise and distortion. While negative feedback actually reduces the gain, it also reduces distortion. Most audio amplifiers are linear amplifiers operating in class AB.

Filters and preamplifiers

Since modern digital devices, including CD and DVD players, radio receivers and tape decks already provide a "flat" signal at line level, the preamp is not needed other than as a volume control and source selector. One alternative to a separate preamp is to simply use passive volume and switching controls, sometimes integrated into a power amplifier to form an integrated amplifier.

Further developments in amplifier design

For some years following the introduction of solid state amplifiers, their perceived sound did not have the excellent audio quality of the best valve amplifiers (see valve audio amplifier). This led audiophiles to believe that valve sound had an intrinsic quality due to the vacuum tube technology itself. In 1970, Matti Otala published a paper on the origin of a previously unobserved form of distortion: transient intermodulation distortion (TIM),[3] later also called slew-induced distortion (SID) by others.[4] TIM distortion was found to occur during very rapid increases in amplifier output voltage.[5] TIM did not appear at steady state sine tone measurements, helping to hide it from design engineers prior to 1970. Problems with TIM distortion stem from reduced open loop frequency response of solid state amplifiers. Further works of Otala and other authors found the solution for TIM distortion, including increasing slew rate, decreasing preamp frequency bandwidth, and the insertion of a lag compensation circuit in the input stage of the amplifier.[6][7][8] In high quality modern amplifiers the open loop response is at least 20 kHz, canceling TIM distortion.

The next step in advanced design was the Baxandall Theorem, created by Peter Baxandall in England.[9] This theorem introduced the concept of comparing the ratio between the input distortion and the output distortion of an amplifier. This new idea helped audio design engineers to better evaluate the distortion processes within an amplifier.

Applications

Important applications include public address systems, theatrical and concert sound reinforcement systems, and domestic systems such as a stereo or home-theatre system. Instrument amplifiers including guitar amplifiers and electric keyboard amplifiers also use audio power amplifiers. In some cases, the power amplifier for an instrument amplifier is integrated into a single amplifier "head" which contains a preamplifier, tone controls, and electronic effects. These components may be mounted in a wooden speaker cabinet to create a "combo amplifier". In other cases, musicians may create a setup with separate rack mount preamplifiers, equalizers, and a power amplifier all mounted in a 19" road case.

References

  1. http://CyrusAudio.com/product-archive/amps/1-integrated-amplifier-all-versions Cyrus Audio: Product Archive: Cyrus One
  2. http://nobelprize.org/educational_games/physics/transistor/history/ The Transistor in a Century of Electronics
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Walter G. Jung, Mark L. Stephens, and Craig C. Todd (June 1979), "An overview of SID and TIM", Audio
  5. "Circuit Design Modifications for Minimizing Transient Intermodulation Distortion in Audio Amplifiers", Matti Otala, Journal of Audio Engineering Society, Vol 20 # 5, June 1972
  6. Distribution of the Phonograph Signal Rate of Change, Lammasniemi, Jorma; Nieminen, Kari, Journal of Audio Engineering Society, Vol. 28 # 5, May 1980.
  7. "Psychoacoustic Detection Threshold of Transient Intermodulation Distortion", Petri-Larmi, M.; Otala, M.; Lammasniemi, J. Journal of Audio Engineering Society, Vol 28 # 3, March 1980
  8. Discussion of practical design features that can provoke or lessen slew-rate limiting and transient intermodulation in audio amplifiers can also be found for example in chapter 9 in John Linsley Hood's 'The Art of Linear Electronics' (Butterworth-Heinemann, Oxford, 1993).
  9. "Audio power amplifier design", Peter Baxandall. Wireless World magazine, February 1979

See also