Barbituric acid

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Barbituric acid
Names
IUPAC name
pyrimidine-2,4,6(1H,3H,5H)-trione
Other names
  • 2,4,6(1H,3H,5H)-pyrimidinetrione
  • 2,4,6-trioxohexahydropyrimidine
  • 2,4,6-trihydroxypyrimidine
  • 2,4,6-trioxypyrimidine
  • 2,4,6-pyrimidinetriol
  • 2,4,6-pyrimidinetrione
  • pyrimidinetriol
  • 2,4,6-trihydroxy-1,3-diazine
  • N,N-malonylurea
  • malonylurea
  • 6-hydroxyuracil
  • 6-hydroxy-hydrouracil
  • N,N-(1,3-dioxo-1,3-propanediyl)urea
Identifiers
67-52-7 YesY
ChEBI CHEBI:16294 YesY
ChEMBL ChEMBL574699 YesY
ChemSpider 5976 YesY
EC Number 200-658-0
Jmol 3D model Interactive image
KEGG C00813 YesY
PubChem 6211
UNII WQ92Y2793G YesY
  • InChI=1S/C4H4N2O3/c7-2-1-3(8)6-4(9)5-2/h1H2,(H2,5,6,7,8,9) YesY
    Key: HNYOPLTXPVRDBG-UHFFFAOYSA-N YesY
  • InChI=1/C4H4N2O3/c7-2-1-3(8)6-4(9)5-2/h1H2,(H2,5,6,7,8,9)
    Key: HNYOPLTXPVRDBG-UHFFFAOYAE
  • O=C1NC(=O)NC(=O)C1
Properties
C4H4N2O3
Molar mass 128.09 g·mol−1
Appearance White crystals
Melting point 245 °C (473 °F; 518 K)
Boiling point 260 °C (500 °F; 533 K)
142 g/l (20 °C)
Vapor pressure {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Barbituric acid or malonylurea or 6-hydroxyuracil is an organic compound based on a pyrimidine heterocyclic skeleton. It is an odorless powder soluble in water. Barbituric acid is the parent compound of barbiturate drugs, although barbituric acid itself is not pharmacologically active.

Synthesis

The compound was discovered by the German chemist Adolf von Baeyer on December 4, 1864, the feast of Saint Barbara (who gave the compound its namesake), by combining urea and malonic acid in a condensation reaction.[1] Malonic acid has since been replaced by diethyl malonate,[2] as using the ester avoids the problem of having to deal with the acidity of the carboxylic acid and its unreactive carboxylate.

File:Barbituric acid synthesis.svg
The synthesis of barbituric acid from malonic acid and urea

Properties

The α-carbon has a reactive hydrogen atom and is quite acidic (pKa = 4.01) even for a diketone species (cf. dimedone with pKa 5.23 and acetylacetone with pKa 8.95) because of the additional aromatic stabilization of the carbanion.

Uses

Using the Knoevenagel condensation reaction, barbituric acid can form a large variety of barbiturate drugs that behave as central nervous system depressants. As of 2007, more than 2550 barbiturates and related compounds have been synthesised, with 50 to 55 in clinical use around the world at present. The first to be used in medicine was barbital (Veronal) starting in 1903, and the second, phenobarbital was first marketed in 1912.

Barbituric acid is one of four ingredients used to make riboflavin (vitamin B2).

Health and safety

Overdose of barbituric acid can cause respiratory problems and death.[citation needed]

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.; Lua error in package.lua at line 80: module 'strict' not found.

Mahmudov K.T., Kopylovich M.N., Maharramov A.M., Kurbanova M.M., Gurbanov A.V., Pombeiro A.J.L. Barbituric acids as a useful tool for the construction of coordination and supramolecular compounds, Coordination Chemistry Reviews, 2014, 265, 1-37. DOI: 10.1016/j.ccr.2014.01.002 http://www.sciencedirect.com/science/article/pii/S0010854514000046

Mahmudov K.T., Kopylovich M.N., Maharramov A.M., Kurbanova M.M., Gurbanov A.V., Pombeiro A.J.L. Barbituric acids as a useful tool for the construction of coordination and supramolecular compounds, Coordination Chemistry Reviews, 2014, 265, 1-37. DOI: 10.1016/j.ccr.2014.01.002 http://www.sciencedirect.com/science/article/pii/S0010854514000046