Calculator

An electronic pocket calculator with a LCD seven-segment display, that can perform arithmetic operations.
A modern scientific calculator with a dot matrix LCD display.

An electronic calculator is a small, portable electronic device used to perform both basic operations of arithmetic and complex mathematical operations.

The first solid state electronic calculator was created in the 1960s, building on the extensive history of tools such as the abacus, developed around 2000 BC, and the mechanical calculator, developed in the 17th century. It was developed in parallel with the analog computers of the day.

The pocket sized devices became available in the 1970s, especially after the first microprocessor developed by Intel for the Japanese calculator company Busicom. They later became commonly used within the Oil and Gas industry.

Modern electronic calculators vary from cheap, give-away, credit-card-sized models to sturdy desktop models with built-in printers. They became popular in the mid-1970s as integrated circuits made their size and cost small. By the end of that decade, calculator prices had reduced to a point where a basic calculator was affordable to most and they became common in schools.

Computer operating systems as far back as early Unix have included interactive calculator programs such as dc and hoc, and calculator functions are included in almost all PDA-type devices (save a few dedicated address book and dictionary devices).

In addition to general purpose calculators, there are those designed for specific markets; for example, there are scientific calculators which include trigonometric and statistical calculations. Some calculators even have the ability to do computer algebra. Graphing calculators can be used to graph functions defined on the real line, or higher-dimensional Euclidean space. Currently, basic calculators are inexpensive, but the scientific and graphing models tend to be higher priced.

In 1986, calculators still represented an estimated 41% of the world's general-purpose hardware capacity to compute information. This diminished to less than 0.05% by 2007.[1]

Design

Scientific calculator displays of fractions and decimal equivalents.

Input

Modern 2016 electronic calculators contain a keyboard with buttons for digits and arithmetical operations. Some even contain 00 and 000 buttons to make larger or smaller numbers easier to enter. Most basic calculators assign only one digit or operation on each button. However, in more specific calculators, a button can perform multi-function working with key combinations.

Display output

Calculators usually have liquid-crystal displays (LCD) as output in place of historical light-emitting diode (LED) displays and vacuum fluorescent displays (VFD). Details are provided in the section Technical improvements.

Large-sized figures and comma separators are often used to improve readability. Various symbols for function commands may also be shown on the display. Fractions such as 13 are displayed as decimal approximations, for example rounded to 0.33333333. Also, some fractions such as 17 which is 0.14285714285714 (to 14 significant figures) can be difficult to recognize in decimal form; as a result, many scientific calculators are able to work in vulgar fractions or mixed numbers.

Memory

Calculators also have the ability to store numbers into memory. Basic types of these store only one number at a time. More specific types are able to store many numbers represented in variables. The variables can also be used for constructing formulas. Some models have the ability to extend memory capacity to store more numbers; the extended address is referred to as an array index.

Power source

Power sources of calculators are batteries, solar cells or electricity (for old models) turning on with a switch or button. Some models even have no turn-off button but they provide some way to put off, for example, leaving no operation for a moment, covering solar cell exposure, or closing their lid. Crank-powered calculators were also common in the early computer era.

Key layout

Usual basic pocket calculator layout
 MC MR M- M+ C ± % ÷ 7 8 9 × 4 5 6 - 1 2 3 + 0 . =
 MC or CM Memory Clear MR or RM Memory Recall M- Memory Subtraction M+ Memory Addition C or AC All Clear CE Clear (last) Entry; sometimes called CE/C: a first press clears the last entry (CE), a second press clears all (C) ± Toggle positive/negative number % Per cent ÷ Division × Multiplication - Subtraction + Addition . Decimal point = Result

Internal workings

In general, a basic electronic calculator consists of the following components:[2]

• Power source (Mains electricity, battery and/or solar cell)
• Keypad (Input device) - consists of keys used to input numbers and function commands (addition, multiplication, square-root, etc.)
• Processor chip (microprocessor or central processing unit) contains:
• Scanning (Polling) unit - when a calculator is powered on, it scans the keypad waiting to pick up an electrical signal when a key is pressed.
• Encoder unit - converts the numbers and functions into binary code.
• X register and Y register - They are number stores where numbers are stored temporarily while doing calculations. All numbers go into the X register first. The number in the X register is shown on the display.
• Flag register - The function for the calculation is stored here until the calculator needs it.
• Permanent memory (ROM) - The instructions for in-built functions (arithmetic operations, square roots, percentages, trigonometry etc.) are stored here in binary form. These instructions are "programs" stored permanently and cannot be erased.
• User memory (RAM) - The store where numbers can be stored by the user. User memory contents can be changed or erased by the user.
• Arithmetic logic unit (ALU) - The ALU executes all arithmetic and logic instructions, and provides the results in binary coded form.
• Decoder unit - converts binary code into "decimal" numbers which can be displayed on the display unit.

Clock rate of a processor chip refers to the frequency at which the central processing unit (CPU) is running. It is used as an indicator of the processor's speed. It is measured in clock cycles per second or the SI unit hertz (Hz). For basic calculators the speed can vary from a few hundred hertz to the kilohertz range.

• Display panel (Output device)- displays input numbers, commands and results. LCDs, VFDs, and LED displays use seven segments to represent each digit in a basic calculator. Advanced calculators may use dot matrix displays.

A printing calculator, in addition to a display panel, has a printing unit that prints results in ink onto a roll of paper, using a printing mechanism.

An office calculating machine with a paper printer.

Example

A basic explanation as to how calculations are performed in a simple 4-function calculator: To perform the calculation 25 + 9, one presses keys in the following sequence on most calculators: 2 5 + 9 =.

• When 2 5 is entered, it is picked up by the scanning unit, the number 25 is encoded and sent to the X register.
• Next, when the + key is pressed, the "addition" instruction is also encoded and sent to the flag register.
• The second number 9 is encoded and sent to the X register. This "pushes" (shifts) the first number out into the Y register.
• When the = key is pressed, a "message" (signal) from the flag register tells the permanent memory that the operation to be done is "addition".
• The numbers in the X and Y registers are then loaded into the ALU and the calculation is carried out following instructions from the permanent memory.
• The answer, 34 is sent (shifted) back to the X register. From there it is converted by the decoder unit into a decimal number (usually binary-coded decimal), and then shown on the display panel.

Other functions are usually carried out using repeated additions or subtractions. Subtractions are usually carried out by using two's-complement operations. Where calculators have additional functions such as square root, or trigonometric functions, software algorithms are required to produce high precision results. Sometimes significant design effort is required to fit all the desired functions in the limited memory space available in the calculator chip, with acceptable calculation time.[3]

Calculators compared to computers

The fundamental difference between a calculator and computer is that a computer can be programmed in a way that allows the program to take different branches according to intermediate results, while calculators are pre-designed with specific functions such as addition, multiplication, and logarithms built in. The distinction is not clear-cut: some devices classed as programmable calculators have programming functionality, sometimes with support for programming languages such as RPL or TI-BASIC.

Typically the user buys the least expensive model having a specific feature set, but does not care much about speed (since speed is constrained by how fast the user can press the buttons). Thus designers of calculators strive to minimize the number of logic elements on the chip, not the number of clock cycles needed to do a computation.

For instance, instead of a hardware multiplier, a calculator might implement floating point mathematics with code in ROM, and compute trigonometric functions with the CORDIC algorithm because CORDIC does not require hardware floating-point. Bit serial logic designs are more common in calculators whereas bit parallel designs dominate general-purpose computers, because a bit serial design minimizes chip complexity, but takes many more clock cycles. (Again, the line blurs with high-end calculators, which use processor chips associated with computer and embedded systems design, particularly the Z80, MC68000, and ARM architectures, as well as some custom designs specifically made for the calculator market.)

History

Precursors to the electronic calculator

The first known tools used to aid arithmetic calculations were bones (used to tally items), pebbles and counting boards, and the Abacus, known to have been used by Sumerians and Egyptians before 2000 BC.[4] Except for the Antikythera mechanism, an "out of the time" astronomical device, development of computing tools arrived near the beginning of the 17th century: Geometric-military compass by Galileo, Logarithms and Napier Bones by Napier, slide rule by Edmund Gunter.

17th century mechanical calculators.

In 1642, the Renaissance saw the invention of the mechanical calculator by Wilhelm Schickard[5] and several decades later Blaise Pascal,[6] a device that was at times somewhat over-promoted as being able to perform all four arithmetic operations with minimal human intervention.[7] Pascal's Calculator could add and subtract two numbers directly and thus, if the tedium could be borne, multiply and divide by repetition. Schickard's machine, constructed several decades earlier, used a clever set of mechanised multiplication tables to ease the process of multiplication and division with the adding machine as a means of completing this operation. (Because they were different inventions with different aims a debate about whether Pascal or Schickard should be credited as the "inventor" of the adding machine (or calculating machine) is probably pointless.[8]) Schickard and Pascal were followed by Gottfried Leibniz who spent forty years designing a four-operation mechanical calculator, inventing in the process his leibniz wheel, but who couldn't design a fully operational machine.[9] There were also five unsuccessful attempts to design a calculating clock in the 17th century.[10]

The Grant mechanical calculating machine, 1877.

The 18th century saw the arrival of some interesting improvements, first by Poleni with the first fully functional calculating clock and four-operation machine, but these machines were almost always one of the kind. It was not until the 19th century and the Industrial Revolution that real developments began to occur. Although machines capable of performing all four arithmetic functions existed prior to the 19th century, the refinement of manufacturing and fabrication processes during the eve of the industrial revolution made large scale production of more compact and modern units possible. The Arithmometer, invented in 1820 as a four-operation mechanical calculator, was released to production in 1851 as an adding machine and became the first commercially successful unit; forty years later, by 1890, about 2,500 arithmometers had been sold[11] plus a few hundreds more from two arithmometer clone makers (Burkhardt, Germany, 1878 and Layton, UK, 1883) and Felt and Tarrant, the only other competitor in true commercial production, had sold 100 comptometers.[12]

It wasn't until 1902 that the familiar push-button user interface was developed, with the introduction of the Dalton Adding Machine, developed by James L. Dalton in the United States.

The Curta calculator was developed in 1948 and, although costly, became popular for its portability. This purely mechanical hand-held device could do addition, subtraction, multiplication and division. By the early 1970s electronic pocket calculators ended manufacture of mechanical calculators, although the Curta remains a popular collectable item.

Development of electronic calculators

The first mainframe computers, using firstly vacuum tubes and later transistors in the logic circuits, appeared in the 1940s and 1950s. This technology was to provide a stepping stone to the development of electronic calculators.

The Casio Computer Company, in Japan, released the Model 14-A calculator in 1957, which was the world's first all-electric (relatively) "compact" calculator. It did not use electronic logic but was based on relay technology, and was built into a desk.

Early calculator LED display from the 1970s.

In October 1961, the world's first all-electronic desktop calculator, the British Bell Punch/Sumlock Comptometer ANITA (A New Inspiration To Arithmetic/Accounting) was announced.[13][14] This machine used vacuum tubes, cold-cathode tubes and Dekatrons in its circuits, with 12 cold-cathode "Nixie" tubes for its display. Two models were displayed, the Mk VII for continental Europe and the Mk VIII for Britain and the rest of the world, both for delivery from early 1962. The Mk VII was a slightly earlier design with a more complicated mode of multiplication, and was soon dropped in favour of the simpler Mark VIII. The ANITA had a full keyboard, similar to mechanical comptometers of the time, a feature that was unique to it and the later Sharp CS-10A among electronic calculators. The ANITA weighed roughly 33 pounds (15 kg) due to its large tube system.[15] Bell Punch had been producing key-driven mechanical calculators of the comptometer type under the names "Plus" and "Sumlock", and had realised in the mid-1950s that the future of calculators lay in electronics. They employed the young graduate Norbert Kitz, who had worked on the early British Pilot ACE computer project, to lead the development. The ANITA sold well since it was the only electronic desktop calculator available, and was silent and quick.

The tube technology of the ANITA was superseded in June 1963 by the U.S. manufactured Friden EC-130, which had an all-transistor design, a stack of four 13-digit numbers displayed on a 5-inch (13 cm) CRT, and introduced reverse Polish notation (RPN) to the calculator market for a price of \$2200, which was about three times the cost of an electromechanical calculator of the time. Like Bell Punch, Friden was a manufacturer of mechanical calculators that had decided that the future lay in electronics. In 1964 more all-transistor electronic calculators were introduced: Sharp introduced the CS-10A, which weighed 25 kg (55 lb) and cost 500,000 yen (~US\$2500), and Industria Macchine Elettroniche of Italy introduced the IME 84, to which several extra keyboard and display units could be connected so that several people could make use of it (but apparently not at the same time).

There followed a series of electronic calculator models from these and other manufacturers, including Canon, Mathatronics, Olivetti, SCM (Smith-Corona-Marchant), Sony, Toshiba, and Wang. The early calculators used hundreds of germanium transistors, which were cheaper than silicon transistors, on multiple circuit boards. Display types used were CRT, cold-cathode Nixie tubes, and filament lamps. Memory technology was usually based on the delay line memory or the magnetic core memory, though the Toshiba "Toscal" BC-1411 appears to have used an early form of dynamic RAM built from discrete components. Already there was a desire for smaller and less power-hungry machines.

The Olivetti Programma 101 was introduced in late 1965; it was a stored program machine which could read and write magnetic cards and displayed results on its built-in printer. Memory, implemented by an acoustic delay line, could be partitioned between program steps, constants, and data registers. Programming allowed conditional testing and programs could also be overlaid by reading from magnetic cards. It is regarded as the first personal computer produced by a company (that is, a desktop electronic calculating machine programmable by non-specialists for personal use). The Olivetti Programma 101 won many industrial design awards.

The Bulgarian ELKA 22.

Another calculator introduced in 1965 was Bulgaria's ELKA 6521,[16][17] developed by the Central Institute for Calculation Technologies and built at the Elektronika factory in Sofia. The name derives from ELektronen KAlkulator, and it weighed around 8 kg (18 lb). It is the first calculator in the world which includes the square root function. Later that same year were released the ELKA 22 (with a luminescent display)[16][18][19] and the ELKA 25, with an in-built printer. Several other models were developed until the first pocket model, the ELKA 101, was released in 1974. The writing on it was in Roman script, and it was exported to western countries.[16][20][21]

The Monroe Epic programmable calculator came on the market in 1967. A large, printing, desk-top unit, with an attached floor-standing logic tower, it could be programmed to perform many computer-like functions. However, the only branch instruction was an implied unconditional branch (GOTO) at the end of the operation stack, returning the program to its starting instruction. Thus, it was not possible to include any conditional branch (IF-THEN-ELSE) logic. During this era, the absence of the conditional branch was sometimes used to distinguish a programmable calculator from a computer.

The first handheld calculator, a prototype called "Cal Tech", was developed by Texas Instruments in 1967. It could add, multiply, subtract, and divide, and its output device was a paper tape.[22][23]

1970s to mid-1980s

The electronic calculators of the mid-1960s were large and heavy desktop machines due to their use of hundreds of transistors on several circuit boards with a large power consumption that required an AC power supply. There were great efforts to put the logic required for a calculator into fewer and fewer integrated circuits (chips) and calculator electronics was one of the leading edges of semiconductor development. U.S. semiconductor manufacturers led the world in Large Scale Integration (LSI) semiconductor development, squeezing more and more functions into individual integrated circuits. This led to alliances between Japanese calculator manufacturers and U.S. semiconductor companies: Canon Inc. with Texas Instruments, Hayakawa Electric (later known as Sharp Corporation) with North-American Rockwell Microelectronics, Busicom with Mostek and Intel, and General Instrument with Sanyo.

Pocket calculators

By 1970, a calculator could be made using just a few chips of low power consumption, allowing portable models powered from rechargeable batteries. The first portable calculators appeared in Japan in 1970, and were soon marketed around the world. These included the Sanyo ICC-0081 "Mini Calculator", the Canon Pocketronic, and the Sharp QT-8B "micro Compet". The Canon Pocketronic was a development of the "Cal-Tech" project which had been started at Texas Instruments in 1965 as a research project to produce a portable calculator. The Pocketronic has no traditional display; numerical output is on thermal paper tape. As a result of the "Cal-Tech" project, Texas Instruments was granted master patents on portable calculators.

Sharp put in great efforts in size and power reduction and introduced in January 1971 the Sharp EL-8, also marketed as the Facit 1111, which was close to being a pocket calculator. It weighed about 482 grams or 1.0652 pound, had a vacuum fluorescent display, rechargeable NiCad batteries, and initially sold for \$395.

However, the efforts in integrated circuit development culminated in the introduction in early 1971 of the first "calculator on a chip", the MK6010 by Mostek,[24] followed by Texas Instruments later in the year. Although these early hand-held calculators were very expensive, these advances in electronics, together with developments in display technology (such as the vacuum fluorescent display, LED, and LCD), led within a few years to the cheap pocket calculator available to all.

In 1971 Pico Electronics.[25] and General Instrument also introduced their first collaboration in ICs, a complete single chip calculator IC for the Monroe Royal Digital III calculator. Pico was a spinout by five GI design engineers whose vision was to create single chip calculator ICs. Pico and GI went on to have significant success in the burgeoning handheld calculator market.

The first truly pocket-sized electronic calculator was the Busicom LE-120A "HANDY", which was marketed early in 1971.[26] Made in Japan, this was also the first calculator to use an LED display, the first hand-held calculator to use a single integrated circuit (then proclaimed as a "calculator on a chip"), the Mostek MK6010, and the first electronic calculator to run off replaceable batteries. Using four AA-size cells the LE-120A measures 4.9 x 2.8 x 0.9 in (124 x 72 x 24 mm).

The first American-made pocket-sized calculator, the Bowmar 901B (popularly referred to as The Bowmar Brain), measuring 5.2 × 3.0 × 1.5 in (131 × 77 × 37 mm), came out in the Autumn of 1971, with four functions and an eight-digit red LED display, for \$240, while in August 1972 the four-function Sinclair Executive became the first slimline pocket calculator measuring 5.4 × 2.2 × 0.35 in (138 × 56 × 9 mm) and weighing 2.5 oz (70 g). It retailed for around £79. By the end of the decade, similar calculators were priced less than £5.

The first Soviet-made pocket-sized calculator, the "Elektronika B3-04" was developed by the end of 1973 and sold at the beginning of 1974.

One of the first low-cost calculators was the Sinclair Cambridge, launched in August 1973. It retailed for £29.95, or £5 less in kit form. The Sinclair calculators were successful because they were far cheaper than the competition; however, their design led to slow and inaccurate computations of transcendental functions.[27]

Meanwhile Hewlett-Packard (HP) had been developing a pocket calculator. Launched in early 1972 it was unlike the other basic four-function pocket calculators then available in that it was the first pocket calculator with scientific functions that could replace a slide rule. The \$395 HP-35, along with nearly all later HP engineering calculators, used reverse Polish notation (RPN), also called postfix notation. A calculation like "8 plus 5" is, using RPN, performed by pressing "8", "Enter↑", "5", and "+"; instead of the algebraic infix notation: "8", "+", "5", "=".

The first Soviet scientific pocket-sized calculator the "B3-18" was completed by the end of 1975.

In 1973, Texas Instruments (TI) introduced the SR-10, (SR signifying slide rule) an algebraic entry pocket calculator using scientific notation for \$150. Shortly after the SR-11 featured an additional key for entering "π". It was followed the next year by the SR-50 which added log and trig functions to compete with the HP-35, and in 1977 the mass-marketed TI-30 line which is still produced.

In 1978 a new company, Calculated Industries, came onto the scene, focusing on specific markets. Their first calculator, the Loan Arranger[28] (1978) was a pocket calculator marketed to the Real Estate industry with preprogrammed functions to simplify the process of calculating payments and future values. In 1985, CI launched a calculator for the construction industry called the Construction Master[29] which came preprogrammed with common construction calculations (such as angles, stairs, roofing math, pitch, rise, run, and feet-inch fraction conversions). This would be the first in a line of construction related calculators.

Programmable calculators

The HP-65, the first programmable pocket calculator (1974).

The first desktop programmable calculators were produced in the mid-1960s by Mathatronics and Casio (AL-1000). These machines were, however, very heavy and expensive. The first programmable pocket calculator was the HP-65, in 1974; it had a capacity of 100 instructions, and could store and retrieve programs with a built-in magnetic card reader. Two years later the HP-25C introduced continuous memory, i.e. programs and data were retained in CMOS memory during power-off. In 1979, HP released the first alphanumeric, programmable, expandable calculator, the HP-41C. It could be expanded with RAM (memory) and ROM (software) modules, as well as peripherals like bar code readers, microcassette and floppy disk drives, paper-roll thermal printers, and miscellaneous communication interfaces (RS-232, HP-IL, HP-IB).

The first Soviet programmable desktop calculator ISKRA 123, powered by the power grid, was released at the beginning of the 1970s. The first Soviet pocket battery-powered programmable calculator, Elektronika "B3-21", was developed by the end of 1977 and released at the beginning of 1978. The successor of B3-21, the Elektronika B3-34 wasn't backward compatible with B3-21, even if it kept the reverse Polish notation (RPN). Thus B3-34 defined a new command set, which later was used in a series of later programmable Soviet calculators. Despite very limited capabilities (98 bytes of instruction memory and about 19 stack and addressable registers), people managed to write all kinds of programs for them, including adventure games and libraries of calculus-related functions for engineers. Hundreds, perhaps thousands, of programs were written for these machines, from practical scientific and business software, which were used in real-life offices and labs, to fun games for children. The Elektronika MK-52 calculator (using the extended B3-34 command set, and featuring internal EEPROM memory for storing programs and external interface for EEPROM cards and other periphery) was used in Soviet spacecraft program (for Soyuz TM-7 flight) as a backup of the board computer.

This series of calculators was also noted for a large number of highly counter-intuitive mysterious undocumented features, somewhat similar to "synthetic programming" of the American HP-41, which were exploited by applying normal arithmetic operations to error messages, jumping to non-existent addresses and other techniques. A number of respected monthly publications, including the popular science magazine "Наука и жизнь" ("Science and Life"), featured special columns, dedicated to optimization techniques for calculator programmers and updates on undocumented features for hackers, which grew into a whole esoteric science with many branches, known as "yeggogology" ("еггогология"). The error messages on those calculators appear as a Russian word "YEGGOG" ("ЕГГОГ") which, unsurprisingly, is translated to "Error".

A similar hacker culture in the USA revolved around the HP-41, which was also noted for a large number of undocumented features and was much more powerful than B3-34.

Technical improvements

A calculator which runs on solar and battery power.

Through the 1970s the hand-held electronic calculator underwent rapid development. The red LED and blue/green vacuum fluorescent displays consumed a lot of power and the calculators either had a short battery life (often measured in hours, so rechargeable nickel-cadmium batteries were common) or were large so that they could take larger, higher capacity batteries. In the early 1970s liquid-crystal displays (LCDs) were in their infancy and there was a great deal of concern that they only had a short operating lifetime. Busicom introduced the Busicom LE-120A "HANDY" calculator, the first pocket-sized calculator and the first with an LED display, and announced the Busicom LC with LCD display. However, there were problems with this display and the calculator never went on sale. The first successful calculators with LCDs were manufactured by Rockwell International and sold from 1972 by other companies under such names as: Dataking LC-800, Harden DT/12, Ibico 086, Lloyds 40, Lloyds 100, Prismatic 500 (a.k.a. P500), Rapid Data Rapidman 1208LC. The LCDs were an early form using the Dynamic Scattering Mode DSM with the numbers appearing as bright against a dark background. To present a high-contrast display these models illuminated the LCD using a filament lamp and solid plastic light guide, which negated the low power consumption of the display. These models appear to have been sold only for a year or two.

A more successful series of calculators using a reflective DSM-LCD was launched in 1972 by Sharp Inc with the Sharp EL-805, which was a slim pocket calculator. This, and another few similar models, used Sharp's "COS" (Calculator On Substrate) technology. An extension of one glass plate needed for the Liquid Crystal Display was used as a substrate to mount the required chips based on a new hybrid technology. The "COS" technology may have been too expensive since it was only used in a few models before Sharp reverted to conventional circuit boards.

In the mid-1970s the first calculators appeared with field-effect, Twisted Nematic TN LCDs with dark numerals against a grey background, though the early ones often had a yellow filter over them to cut out damaging ultraviolet rays. The advantage of LCDs is that they are passive light modulators reflecting light, which require much less power than light-emitting displays such as LEDs or VFDs. This led the way to the first credit-card-sized calculators, such as the Casio Mini Card LC-78 of 1978, which could run for months of normal use on button cells.

There were also improvements to the electronics inside the calculators. All of the logic functions of a calculator had been squeezed into the first "Calculator on a chip" integrated circuits in 1971, but this was leading edge technology of the time and yields were low and costs were high. Many calculators continued to use two or more integrated circuits (ICs), especially the scientific and the programmable ones, into the late 1970s.

The power consumption of the integrated circuits was also reduced, especially with the introduction of CMOS technology. Appearing in the Sharp "EL-801" in 1972, the transistors in the logic cells of CMOS ICs only used any appreciable power when they changed state. The LED and VFD displays often required additional driver transistors or ICs, whereas the LCD displays were more amenable to being driven directly by the calculator IC itself.

With this low power consumption came the possibility of using solar cells as the power source, realised around 1978 by such calculators as the Royal Solar 1, Sharp EL-8026, and Teal Photon.

Mass market phase

At the beginning of the 1970s hand-held electronic calculators were very expensive, costing two or three weeks' wages, and so were a luxury item. The high price was due to their construction requiring many mechanical and electronic components which were expensive to produce, and production runs were not very large. Many companies saw that there were good profits to be made in the calculator business with the margin on these high prices. However, the cost of calculators fell as components and their production techniques improved, and the effect of economies of scale was felt.

By 1976 the cost of the cheapest four-function pocket calculator had dropped to a few dollars, about one 20th of the cost five years earlier. The consequences of this were that the pocket calculator was affordable, and that it was now difficult for the manufacturers to make a profit out of calculators, leading to many companies dropping out of the business or closing down altogether. The companies that survived making calculators tended to be those with high outputs of higher quality calculators, or producing high-specification scientific and programmable calculators.

Mid-1980s to present

The first calculator capable of symbolic computation was the HP-28C, released in 1987. It was able to, for example, solve quadratic equations symbolically. The first graphing calculator was the Casio fx-7000G released in 1985.

The two leading manufacturers, HP and TI, released increasingly feature-laden calculators during the 1980s and 1990s. At the turn of the millennium, the line between a graphing calculator and a handheld computer was not always clear, as some very advanced calculators such as the TI-89, the Voyage 200 and HP-49G could differentiate and integrate functions, solve differential equations, run word processing and PIM software, and connect by wire or IR to other calculators/computers.

The HP 12c financial calculator is still produced. It was introduced in 1981 and is still being made with few changes. The HP 12c featured the reverse Polish notation mode of data entry. In 2003 several new models were released, including an improved version of the HP 12c, the "HP 12c platinum edition" which added more memory, more built-in functions, and the addition of the algebraic mode of data entry.

Calculated Industries competed with the HP 12c in the mortgage and real estate markets by differentiating the key labeling; changing the “I”, “PV”, “FV” to easier labeling terms such as "Int", "Term", "Pmt", and not using the reverse Polish notation. However, CI's more successful calculators involved a line of construction calculators, which evolved and expanded in the 1990s to present. According to Mark Bollman,[30] a mathematics and calculator historian and associate professor of mathematics at Albion College, the "Construction Master is the first in a long and profitable line of CI construction calculators" which carried them through the 1980s, 1990s, and to the present.

Personal computers often come with a calculator utility program that emulates the appearance and functionality of a calculator, using the graphical user interface to portray a calculator. One such example is Windows Calculator. Most personal data assistants (PDA) and smartphones also have such a feature.

Use in education

In most countries, students use calculators for schoolwork. There was some initial resistance to the idea out of fear that basic arithmetic skills would suffer. There remains disagreement about the importance of the ability to perform calculations "in the head", with some curricula restricting calculator use until a certain level of proficiency has been obtained, while others concentrate more on teaching estimation techniques and problem-solving. Research suggests that inadequate guidance in the use of calculating tools can restrict the kind of mathematical thinking that students engage in.[31] Others have argued[who?] that calculator use can even cause core mathematical skills to atrophy, or that such use can prevent understanding of advanced algebraic concepts.[32] In December 2011 the UK's Minister of State for Schools, Nick Gibb, voiced concern that children can become "too dependent" on the use of calculators.[33] As a result, the use of calculators is to be included as part of a review of the Curriculum.[33] In United States, many math educators and boards of education enthusiastically endorsed the NCTM (National Council of Teachers of Mathematics) standards and actively promoted the use of classroom calculators from kindergarten through high school.

Manufacturers

These are some of the manufacturers which made a notable contribution to calculator development:[34]

 APF - US Aurora - China Bell Punch Company / ANITA - UK. Bowmar - US Brunsviga - Germany Burroughs - US Busicom - Japan Canon - Japan Casio - Japan Commodore / CBM - Canada/US Comptometer/ Felt & Tarrant - US Compucorp - US Digitz - China Elektronika - USSR. Facit - Sweden. Felt & Tarrant - US →Comptometer. Friden, Inc. - US General Instrument - US Hewlett-Packard - US Hitachi - Japan. IME - Italy. Litronix - US Lloyd's - US Marchant - US Monroe - US National Semiconductor - US Nippon Calculating Machine / NCM - Japan. →Busicom. Novus - US →National Semiconductor. Odhner - Russia and Sweden. Olivetti - Italy. Rapid Data - Canada. Rockwell - US Sanyo - Japan. Sharp - Japan. Sinclair - UK. Sumlock Anita - UK. →Bell Punch Company / ANITA. Summit - US TEAL - Japan and US Texas Instruments - US Toshiba - Japan. Unicom - US →Rockwell. Victor - US Wang - US

Notes

1. "The World’s Technological Capacity to Store, Communicate, and Compute Information", Martin Hilbert and Priscila López (2011), Science (journal), 332(6025), 60-65; see also "free access to the study".
2. John Lewis, The Pocket Calculator Book. (London: Usborne, 1982)
3. "David S. Cochran, ''Algorithms and accuracy in the HP35'', ''Hewlett Packard Journal'', June 1972" (PDF). Retrieved 2013-10-03.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
4. Ifrah 2001:11
5. See for example, http://calculatorhistory.net
6. Pascal's invention of the calculating machine. Pascal invented his machine just four hundred years ago, as a youth of nineteen. He was spurred to it by sharing the burden of arithmetical labor involved in his father's official work as supervisor of taxes at Rouen. He conceived the idea of doing the work mechanically, and developed a design appropriate for this purpose ; showing herein the same combination of pure science and mechanical genius that characterized his whole life. But it was one thing to conceive and design the machine, and another to get it made and put into use. Here were needed those practical gifts that he displayed later in his inventions....
In a sense, Pascal's invention was premature, in that the mechanical arts in his time were not sufficiently advanced to enable his machine to be made at an economic price, with the accuracy and strength needed for reasonably long use. This difficulty was not overcome until well on into the nineteenth century, by which time also a renewed stimulus to invention was given by the need for many kinds of calculation more intricate than those considered by Pascal. S. Chapman, Magazine Nature, pp.508,509 (1942)
7. "Pascal and Leibnitz, in the seventeenth century, and Diderot at a later period, endeavored to construct a machine which might serve as a substitute for human intelligence in the combination of figures" The Gentleman's magazine, Volume 202, p.100
8. In 1893, the German calculating machine inventor Arthur Burkhardt was asked to put Leibniz machine in operating condition if possible. His report was favorable except for the sequence in the carry Ginsburg, Jekuthiel (1933). Scripta Mathematica. Kessinger Publishing, LLC. p. 149. ISBN 978-0-7661-3835-3.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
9. "(retrieved on 01/02/2012)" (in français). Arithmometre.org. Retrieved 2013-10-03.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
10. Felt, Dorr E. (1916). Mechanical arithmetic, or The history of the counting machine. Chicago: Washington Institute. p. 4.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
11. "Simple and Silent", Office Magazine, December 1961, p1244
12. "'Anita' der erste tragbare elektonische Rechenautomat" [trans: "the first portable electronic computer"], Buromaschinen Mechaniker, November 1961, p207
13. Ball, Guy; Flamm, Bruce. "The History of Pocket Electronic Calculators". vintagecalculators.com. Vintage Calculators Web Museum. Retrieved 8 July 2014.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
14. The Bulgarian ELKA electronic calculators, Clockwiser. Retrieved Oct 2013.
15. ELKA 6521 (photo). Retrieved Oct 2013.
16. ELKA 22 (photo). Retrieved Oct 2013.
17. ELKA 22, Bulgarian Calculator, Soviet digital calculators collection. Retrieved Oct 2013.
18. ELKA 100 series (photos), (photo), Clockwiser. Retrieved Oct 2013.
19. ELKA 101 description, Vintage Calculators. Retrieved Oct 2013.
20. Texas Instruments Celebrates the 35th Anniversary of Its Invention of the Calculator Texas Instruments press release, 15 August 2002.
21. Electronic Calculator Invented 40 Years Ago All Things Considered, NPR, 30 September 2007. Audio interview with one of the inventors.
22. "Single Chip Calculator Hits the Finish Line", Electronics, February 1, 1971, p19
23. "Microprocessor History". Spingal.plus.com. Retrieved 2011-07-19.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
24. "The one-chip calculator is here, and it's only the beginning", Electronic Design, February 18, 1971, p34.
25. Reversing Sinclair's amazing 1974 calculator hack - half the ROM of the HP-35, Ken Shirriff, 2013. See in particular the section "Limited performance and accuracy". For additional coverage of Shirriff's results, see Sharwood, Simon (September 2, 2013), "Google chap reverse engineers Sinclair Scientific Calculator", The Register<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
26. "The Loan Arranger II". Mathcs.albion.edu. Retrieved 2011-07-19.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
27. "Construction Master". Mathcs.albion.edu. Retrieved 2011-07-19.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
28. Mark Bollman. "Mark->'s Calculator Collection". Mathcs.albion.edu. Retrieved 2011-07-19.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
29. Thomas J. Bing, Edward F. Redish, Symbolic Manipulators Affect Mathematical Mindsets, December 1999
30. "Calculator Use in Elementary Grades". NCTM. Retrieved 3 August 2015.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
31. Vasagar, Jeevan; Shepherd, Jessica (December 1, 2011). "Subtracting calculators adds to children's maths abilities, says minister". The Guardian. London. Retrieved December 7, 2011. The use of calculators will be looked at as part of a national curriculum review, after the schools minister, Nick Gibb, expressed concern that children's mental and written arithmetic was suffering because of reliance on the devices. Gibb said: "Children can become too dependent on calculators if they use them at too young an age. They shouldn't be reaching for a gadget every time they need to do a simple sum. [...]"<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
32. "Calculator companies". Vintagecalculators.com. Retrieved 2013-10-03.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>

References

• Hamrick, Kathy B. (October 1996). "The History of the Hand-Held Electronic Calculator". The American Mathematical Monthly. The American Mathematical Monthly, Vol. 103, No. 8. 103 (8): 633–639. doi:10.2307/2974875. JSTOR 2974875.CS1 maint: ref=harv (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
• Marguin, Jean (1994). Histoire des instruments et machines à calculer, trois siècles de mécanique pensante 1642–1942 (in français). Hermann. ISBN 978-2-7056-6166-3.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
• Williams, Michael R. (1997). History of Computing Technology. Los Alamitos, California: IEEE Computer Society. ISBN 0-8186-7739-2.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
• Ifrah, Georges (2001). The Universal History of Computing. John Wiley & Sons, Inc. ISBN 0-471-39671-0.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
• Prof. S. Chapman (October 31, 1942). "Blaise Pascal (1623–1662) Tercentenary of the calculating machine". Nature. London. 150: 508–509. doi:10.1038/150508a0.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>