Copper(I) oxide

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Copper(I) oxide
Copper(I) oxide
Copper(I) oxide unit cell
Names
IUPAC name
Copper(I) oxide
Other names
Cuprous oxide
Dicopper oxide
Cuprite
Red copper oxide
Identifiers
1317-39-1 YesY
ChemSpider 8488659 YesY
EC Number 215-270-7
Jmol 3D model Interactive image
Interactive image
KEGG C18714 YesY
PubChem 10313194
RTECS number GL8050000
UNII T8BEA5064F YesY
  • InChI=1S/2Cu.O/q2*+1;-2 YesY
    Key: KRFJLUBVMFXRPN-UHFFFAOYSA-N YesY
  • InChI=1/2Cu.O/rCu2O/c1-3-2
    Key: BERDEBHAJNAUOM-YQWGQOGZAF
  • InChI=1/2Cu.O/q2*+1;-2
    Key: KRFJLUBVMFXRPN-UHFFFAOYAM
  • [Cu]O[Cu]
  • [Cu+].[Cu+].[O-2]
Properties
Cu2O
Molar mass 143.09 g/mol
Appearance brownish-red solid
Density 6.0 g/cm3
Melting point 1,232 °C (2,250 °F; 1,505 K)
Boiling point 1,800 °C (3,270 °F; 2,070 K)
Insoluble
Solubility in acid Soluble
Band gap 2.137 eV
Structure
cubic
Thermochemistry
93 J·mol−1·K−1
−170 kJ·mol−1
Vapor pressure {{{value}}}
Related compounds
Other anions
Copper(I) sulfide
Copper(II) sulfide
Copper(I) selenide
Other cations
Copper(II) oxide
Silver(I) oxide
Nickel(II) oxide
Zinc oxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Copper(I) oxide or cuprous oxide is the inorganic compound with the formula Cu2O. It is one of the principal oxides of copper. This red-coloured solid is a component of some antifouling paints. The compound can appear either yellow or red, depending on the size of the particles.[1] Copper(I) oxide is found as the reddish mineral cuprite.

Preparation

Copper(I) oxide may be produced by several methods.[2] Most straightforwardly, it arises via the oxidation of copper metal:

4 Cu + O2 → 2 Cu2O

Additives such as water and acids affect the rate of this process as well as the further oxidation to copper(II) oxides. It is also produced commercially by reduction of copper(II) solutions with sulfur dioxide. Aqueous cuprous chloride solutions react with base to give the same material. In all cases, the color is highly sensitive to the procedural details.

Pourbaix diagram for copper in uncomplexed media (anions not other than OH- considered). Ion concentration 0.001 m (mol/kg water). Temperature 25°C.

Formation of copper(I) oxide is the basis of the Fehling's test and Benedict's test for reducing sugars. These sugars reduce an alkaline solution of a copper(II) salt, giving a bright red precipitate of Cu2O.

It forms on silver-plated copper parts exposed to moisture when the silver layer is porous or damaged. This kind of corrosion is known as red plague.

Little evidence exists for cuprous hydroxide, which is expected to rapidly undergo dehydration. A similar situation applies to the hydroxides of gold(I) and silver(I).

Properties

The solid is diamagnetic. In terms of their coordination spheres, copper centres are 2-coordinated and the oxides are tetrahedral. The structure thus resembles in some sense the main polymorphs of SiO2, and both structures feature interpenetrated lattices.

Copper(I) oxide dissolves in concentrated ammonia solution to form the colourless complex [Cu(NH3)2]+, which is easily oxidized in air to the blue [Cu(NH3)4(H2O)2]2+. It dissolves in hydrochloric acid to give solutions of CuCl2. Dilute sulfuric acid and nitric acid produce copper(II) sulfate and copper(II) nitrate, respectively.[3]

Cu2O degrades to copper(II) oxide in moist air.

Structure

Cu2O crystallizes in a cubic structure with a lattice constant al=4.2696 Å. The Cu atoms arrange in a fcc sublattice, the O atoms in a bcc sublattice. One sublattice is shifted by a quarter of the body diagonal. The space group is \scriptstyle Pn\bar{3}m, which includes the point group with full octahedral symmetry.

Semiconducting properties

In the history of semiconductor physics, Cu2O is one of the most studied materials, and many experimental observations and semiconductor applications have been demonstrated first in this material:

Today, it is still under investigation in semiconductor optics. In particular, researchers are attempting to create a Bose–Einstein condensate of excitons in Cu2O.[5]

The lowest excitons in Cu2O are extremely long lived; absorption lineshapes have been demonstrated with neV linewidths, which is the narrowest bulk exciton resonance ever observed.[8] The associated quadrupole polaritons have low group velocity approaching the speed of sound. Thus, light moves almost as slowly as sound in this medium, which results in high polariton densities. Another unusual feature of the ground state excitons is that all primary scattering mechanisms are known quantitatively.[9] Cu2O was the first substance where an entirely parameter-free model of absorption linewidth broadening by temperature could be established, allowing the corresponding absorption coefficient to be deduced. It can be shown using Cu2O that the Kramers–Kronig relations do not apply to polaritons.[10]


Applications

Cuprous oxide is commonly used as a pigment, a fungicide, and an antifouling agent for marine paints. Rectifier diodes based on this material have been used industrially as early as 1924, long before silicon became the standard. Copper(I) oxide is also responsible for the pink color in a positive Benedict's Test.

See also

References

  1. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, Oxford, UK, 1997.
  2. H. Wayne Richardson "Copper Compounds in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. doi:10.1002/14356007.a07_567
  3. D. Nicholls, Complexes and First-Row Transition Elements, Macmillan Press, London, 1973.
  4. L. O. Grondahl, Unidirectional current carrying device, Patent, 1927
  5. 5.0 5.1 5.2 5.3 C. F. Klingshirn, Semiconductor Optics, 3rd ed., Springer, 2006, ISBN 354038345X
  6. L. Hanke, D. Fröhlich, A.L. Ivanov, P.B. Littlewood, and H. Stolz "LA-Phonoritons in Cu2O" Phys. Rev. Lett. 83 (1999), 4365.
  7. L. Brillouin: Wave Propagation and Group Velocity, Academic Press, New York, 1960.
  8. J. Brandt, D. Fröhlich, C. Sandfort, M. Bayer, H. Stolz, and N. Naka, Ultranarrow absorption and two-phonon excitation spectroscopy of Cu2O paraexcitons in a high magnetic field, Phys. Rev. Lett. 99, 217403 (2007). doi:10.1103/PhysRevLett.99.217403
  9. J. P. Wolfe and A. Mysyrowicz: Excitonic Matter, Scientific American 250 (1984), No. 3, 98.
  10. Lua error in package.lua at line 80: module 'strict' not found.

External links