da Vinci Surgical System

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
da Vinci Surgical System
Laproscopic Surgery Robot.jpg
Patient-side components of a da Vinci system, including the effector arms and endoscope.
Manufacturer Intuitive Surgical
Country United States
Year of creation 2000 (initial FDA approval)
Type Surgery robot
Purpose Medical

The Da Vinci Surgical System is a robotic surgical system made by the American company Intuitive Surgical. Approved by the Food and Drug Administration (FDA) in 2000, it is designed to facilitate complex surgery using a minimally invasive approach, and is controlled by a surgeon from a console. The system is commonly used for prostatectomies, and increasingly for cardiac valve repair and gynecologic surgical procedures.[1][2] According to the manufacturer, the da Vinci System is called "da Vinci" in part because Leonardo da Vinci's "study of human anatomy eventually led to the design of the first known robot in history."[3]

Da Vinci robots operate in hospitals worldwide, with an estimated 200,000 surgeries conducted in 2012, most commonly for hysterectomies and prostate removals.[4] As of June 30, 2014, there was an installed base of 3,102 units worldwide, up from 2,000 units at the same time the previous year. The location of these units are as follows: 2,153 in the United States, 499 in Europe, 183 in Japan, and 267 in the rest of the world.[5] The "Si" version of the system costs on average slightly under US$2 million, in addition to several hundred thousand dollars of annual maintenance fees.[6] The da Vinci system has been criticised for its cost and for a number of issues with its surgical performance.[2][7]

Overview

da Vinci patient-side component (left) and surgeon console (right)

The da Vinci System consists of a surgeon’s console that is typically in the same room as the patient, and a patient-side cart with four interactive robotic arms controlled from the console. Three of the arms are for tools that hold objects, and can also act as scalpels, scissors, bovies, or unipolar or hi. The surgeon uses the console’s master controls to maneuver the patient-side cart’s three or four robotic arms (depending on the model). The instruments’ jointed-wrist design exceeds the natural range of motion of the human hand; motion scaling and tremor reduction further interpret and refine the surgeon’s hand movements. The da Vinci System always requires a human operator, and incorporates multiple redundant safety features designed to minimize opportunities for human error when compared with traditional approaches.

The da Vinci System has been designed to improve upon conventional laparoscopy, in which the surgeon operates while standing, using hand-held, long-shafted instruments, which have no wrists. With conventional laparoscopy, the surgeon must look up and away from the instruments, to a nearby 2D video monitor to see an image of the target anatomy. The surgeon must also rely on a patient-side assistant to position the camera correctly. In contrast, the da Vinci System’s design allows the surgeon to operate from a seated position at the console, with eyes and hands positioned in line with the instruments and using controls at the console to move the instruments and camera.

By providing surgeons with superior visualization, enhanced dexterity, greater precision and ergonomic comfort, the da Vinci Surgical System makes it possible for more surgeons to perform minimally invasive procedures involving complex dissection or reconstruction. For the patient, a da Vinci procedure can offer all the potential benefits of a minimally invasive procedure, including less pain, less blood loss and less need for blood transfusions. Moreover, the da Vinci System can enable a shorter hospital stay, a quicker recovery and faster return to normal daily activities.[8]

FDA clearance

The Food and Drug Administration (FDA) cleared the da Vinci Surgical System in 2000 for adult and pediatric use in urologic surgical procedures, general laparoscopic surgical procedures, gynecologic laparoscopic surgical procedures, general non-cardiovascular thoracoscopic surgical procedures and thoracoscopically assisted cardiotomy procedures. The FDA also cleared the da Vinci System to be employed with adjunctive mediastinotomy to perform coronary anastomosis during cardiac revascularization.[9]

Representative clinical uses

The da Vinci System has been successfully used in the following procedures:[9]

Future applications

Although the general term "robotic surgery" is often used to refer to the technology, this term can give the impression that the da Vinci System is performing the surgery autonomously. In contrast, the current da Vinci Surgical System cannot – in any manner – function on its own, as it was not designed as an autonomous system and lacks decision making software. Instead, it relies on a human operator for all input; however, all operations – including vision and motor functions— are performed through remote human-computer interaction, and thus with the appropriate weak AI software, the system could in principle perform partially or completely autonomously. The difficulty with creating an autonomous system of this kind is not trivial; a major obstacle is that surgery per se is not an engineered process – a requirement for weak AI. The current system is designed merely to replicate seamlessly the movement of the surgeon's hands with the tips of micro-instruments, not to make decisions or move without the surgeon’s direct input.

The possibility of long-distance operations depends on the patient having access to a da Vinci System, but technically the system could allow a doctor to perform telesurgery on a patient in another country. In 2001, Dr. Marescaux and a team from IRCAD used a combination of high-speed fiber-optic connection with an average delay of 155 ms with advanced asynchronous transfer mode (ATM) and a Zeus telemanipulator to successfully perform the first transatlantic surgical procedure, covering the distance between New York and Strasbourg. The event was considered a milestone of global telesurgery, and was dubbed “Operation Lindbergh”.[11]

Criticism

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Critics of robotic surgery assert that it is difficult for users to learn and that it has not been shown to be more effective than traditional laparoscopic surgery.[2] The da Vinci system uses proprietary software, which cannot be modified by physicians, thereby limiting the freedom to modify the operation system.[4] Furthermore, its $2 million cost places it beyond the reach of many institutions.[6]

The manufacturer of the system, Intuitive Surgical, has been criticized for short-cutting FDA approval by a process known as "premarket notification," which claims the product is similar to already-approved products. Intuitive has also been accused of providing inadequate training, and encouraging health care providers to reduce the number of supervised procedures required before a doctor is allowed to use the system without supervision.[12] There have also been claims of patient injuries caused by stray electrical currents released from inappropriate parts of the surgical tips used by the system. Intuitive counters that the same type of stray currents can occur in non-robotic laparoscopic procedures.[13] A study published in the Journal of the American Medical Association found that side effects and blood loss in robotically-performed hysterectomies are no better than those performed by traditional surgery, despite the significantly greater cost of the system.[14][15] As of 2013, the FDA is investigating problems with the da Vinci robot, including deaths during surgeries that used the device; a number of related lawsuits are also underway.[7]

From a social analysis, a disadvantage is the potential for this technology to dissolve the creative freedoms of the surgeon, once hailed by scholar Timothy Lenoir as one of the most professional individual autonomous occupations to exist. Lenoir claims that in the "heroic age of medicine," the surgeon was hailed as a hero for his intuitive knowledge of human anatomy and his well-crafted techniques in repairing vital body systems. Lenoir argues that the da Vinci's 3D console and robotic arms create a mediating form of action called medialization, in which internal knowledge of images and routes within the body become external knowledge mapped into simplistic computer coding.[16]

See also

References

  1. "Robots as surgical enablers". MarketWatch. 3 February 2005. Retrieved 17 March 2013.
  2. 2.0 2.1 2.2 "Prepping Robots to Perform Surgery". New York Times. 4 May 2008. Retrieved 17 March 2013.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. 4.0 4.1 Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. 6.0 6.1 "The Slow Rise of the Robot Surgeon". MIT Technology Review. 24 March 2010. Retrieved 23 March 2013.
  7. 7.0 7.1 Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. 9.0 9.1 Lua error in package.lua at line 80: module 'strict' not found.[dead link]
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. http://www.nature.com/nature/journal/v413/n6854/full/413379a0.html
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. Lenoir, Timothy [1], in Phillip Thurtle, ed., Semiotic Flesh: Information and the Human Body, Seattle, WA: University of Washington Press, 2002, pp. 28-51. Accessed 27 October 2013

Da Vinci Live Surgery Videos

External links