Timeline of chemical element discoveries

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

The discovery of the 118 elements known to exist today is presented here in chronological order. The elements are listed generally in the order in which each was first defined as the pure element, as the exact date of discovery of most elements cannot be accurately defined.

Given is each element's name, atomic number, year of first report, name of the discoverer, and some notes related to the discovery.

Table

Periodic table by era of discovery
1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Group →
↓ Period
1 1
H
2
He
2 3
Li
4
Be
5
B
6
C
7
N
8
O
9
F
10
Ne
3 11
Na
12
Mg
13
Al
14
Si
15
P
16
S
17
Cl
18
Ar
4 19
K
20
Ca
21
Sc
22
Ti
23
V
24
Cr
25
Mn
26
Fe
27
Co
28
Ni
29
Cu
30
Zn
31
Ga
32
Ge
33
As
34
Se
35
Br
36
Kr
5 37
Rb
38
Sr
39
Y
40
Zr
41
Nb
42
Mo
43
Tc
44
Ru
45
Rh
46
Pd
47
Ag
48
Cd
49
In
50
Sn
51
Sb
52
Te
53
I
54
Xe
6 55
Cs
56
Ba
1 asterisk 71
Lu
72
Hf
73
Ta
74
W
75
Re
76
Os
77
Ir
78
Pt
79
Au
80
Hg
81
Tl
82
Pb
83
Bi
84
Po
85
At
86
Rn
7 87
Fr
88
Ra
2 asterisks 103
Lr
104
Rf
105
Db
106
Sg
107
Bh
108
Hs
109
Mt
110
Ds
111
Rg
112
Cn
113
Uut
114
Fl
115
Uup
116
Lv
117
Uus
118
Uuo
 
1 asterisk 57
La
58
Ce
59
Pr
60
Nd
61
Pm
62
Sm
63
Eu
64
Gd
65
Tb
66
Dy
67
Ho
68
Er
69
Tm
70
Yb
2 asterisks 89
Ac
90
Th
91
Pa
92
U
93
Np
94
Pu
95
Am
96
Cm
97
Bk
98
Cf
99
Es
100
Fm
101
Md
102
No
 
Background color shows age of discovery:
Antiquity to Middle Ages Middle Ages–​1799 1800–​1849 1850–​1899 1900–​1949 1950–​1999 Since 2000
(12 elements)
Antiquity to Middle Ages: unrecorded discoveries up into the Middle Ages
(22 elements)
Discoveries during the age of enlightenment
(24 elements)
Scientific and industrial revolutions
(26 elements)
The age of classifying elements; application of spectrum analysis techniques: Boisbaudran, Bunsen, Crookes, Kirchhoff, and others "hunting emission line signatures"
(13 elements)
Development of old quantum theory and quantum mechanics
(16 elements)
Post Manhattan project; synthesis of atomic numbers 98 and above (colliders, bombardment techniques)
(5 elements)
Recent synthesis
black=solid green=liquid red=gas gray=unknown Color of the atomic number shows state of matter (at 0 °C and 1 atm)
Primordial From decay Synthetic Border shows natural occurrence of the element

Unrecorded discoveries

Z Element Earliest use Oldest
existing
sample
Discoverers Place of
oldest
sample
Notes
29 Copper 9000 BC 6000 BC Middle East Anatolia Copper was probably the first metal mined and crafted by humans.[1] It was originally obtained as a native metal and later from the smelting of ores. Earliest estimates of the discovery of copper suggest around 9000 BC in the Middle East. It was one of the most important materials to humans throughout the copper and bronze ages. Copper beads dating from 6000 BC have been found in Çatal Höyük, Anatolia.[2]
82 Lead 7000 BC 3800 BC Africa Abydos, Egypt It is believed that lead smelting began at least 9,000 years ago, and the oldest known artifact of lead is a statuette found at the temple of Osiris on the site of Abydos dated circa 3800 BC.[3]
79 Gold Before 6000 BC ca. 4400 BC Bulgaria Varna Necropolis The oldest golden treasure in the world, dating from 4,600 BC to 4,200 BC, was discovered at the burial site Varna Necropolis.
47 Silver Before 5000 BC ca. 4000 BC Asia Minor Estimated to have been discovered shortly after copper and gold.[4][5]
26 Iron Before 5000 BC 4000 BC Unknown; see History of ferrous metallurgy Egypt There is evidence that iron was known from before 5000 BC.[6] The oldest known iron objects used by humans are some beads of meteoric iron, made in Egypt in about 4000 BC. The discovery of smelting around 3000 BC led to the start of the iron age around 1200 BC[7] and the prominent use of iron for tools and weapons.[8]
6 Carbon 3750 BC Egyptians and Sumerians The earliest known use of charcoal was for the reduction of copper, zinc, and tin ores in the manufacture of bronze, by the Egyptians and Sumerians.[9] Diamonds were probably known as early as 2500 BC.[10] The first true chemical analyses were made in the 18th century,[11] and in 1789 carbon was listed by Antoine Lavoisier as an element.[12]
50 Tin 3500 BC 2000 BC Unknown; see Tin#History First smelted in combination with copper around 3500 BC to produce bronze.[13] The oldest artifacts date from around 2000 BC.[14]
16 Sulfur Before 2000 BC Chinese/Indians First used at least 4,000 years ago.[15] Recognized as an element by Antoine Lavoisier in 1777.
80 Mercury Before 2000 BC 1500 BC Chinese/Indians Egypt Known to ancient Chinese and Indians before 2000 BC, and found in Egyptian tombs dating from 1500 BC.[16]
30 Zinc Before 1000 BC 1000 BC Indian metallurgists Indian subcontinent Extracted as a metal since antiquity (before 1000 BC) by Indian metallurgists, but the true nature of this metal was not understood in ancient times. Identified as a unique metal by the metallurgist Rasaratna Samuccaya in 800[17] and by the alchemist Paracelsus in 1526.[18] Isolated by Andreas Sigismund Marggraf in 1746.[19]
33 Arsenic 2500 BC/1250 AD Bronze age A. Magnus In use in the early bronze age; Albertus Magnus was the first European to isolate the element in 1250.[20] In 1649, Johann Schröder published two ways of preparing elemental arsenic.[20]
51 Antimony 3000 BC In widespread use in Egypt and the Middle East.[21]

Recorded discoveries

Z Element Observed or predicted Isolated (widely known) Observer First isolator Notes
15 Phosphorus 1669 1669 H. Brand H. Brand Prepared from urine, it was the first element to be chemically discovered.[22]
27 Cobalt 1732 G. Brandt Proved that the blue color of glass is due to a new kind of metal and not bismuth as thought previously.[23]
78 Platinum 1735 1735 A. de Ulloa A. de Ulloa First description of a metal found in South American gold was in 1557 by Julius Caesar Scaliger. Ulloa published his findings in 1748, but Sir Charles Wood also investigated the metal in 1741. First reference to it as a new metal was made by William Brownrigg in 1750.[24]
28 Nickel 1751 1751 F. Cronstedt F. Cronstedt Found by attempting to extract copper from the mineral known as fake copper (now known as niccolite).[25]
83 Bismuth 1753 C.F. Geoffroy Definitively identified by Claude François Geoffroy in 1753.[26]
12 Magnesium 1755 1808 J. Black H. Davy Black observed that magnesia alba (MgO) was not quicklime (CaO). Davy isolated the metal electrochemically from magnesia.[27]
1 Hydrogen 1766 1500 H. Cavendish Paracelsus Cavendish was the first to distinguish H
2
from other gases, although Paracelsus around 1500, Robert Boyle, and Joseph Priestley had observed its production by reacting strong acids with metals. Lavoisier named it in 1793.[28][29]
8 Oxygen 1771 1771 W. Scheele W. Scheele Obtained it by heating mercuric oxide and nitrates in 1771, but did not publish his findings until 1777. Joseph Priestley also prepared this new air by 1774, but only Lavoisier recognized it as a true element; he named it in 1777.[30][31]
7 Nitrogen 1772 1772 D. Rutherford D. Rutherford He discovered Nitrogen while he was studying at the University of Edinburgh.[32] He showed that the air in which animals had breathed, even after removal of the exhaled carbon dioxide, was no longer able to burn a candle. Carl Wilhelm Scheele, Henry Cavendish, and Joseph Priestley also studied the element at about the same time, and Lavoisier named it in 1775-6.[33]
17 Chlorine 1774 1774 W. Scheele W. Scheele Obtained it from hydrochloric acid, but thought it was an oxide. Only in 1808 did Humphry Davy recognize it as an element.[34]
25 Manganese 1774 1774 W. Scheele G. Gahn Distinguished pyrolusite as the calx of a new metal. Ignatius Gottfred Kaim also discovered the new metal in 1770, as did Scheele in 1774. It was isolated by reduction of manganese dioxide with carbon.[35]
56 Barium 1772 1808 W. Scheele H. Davy Scheele distinguished a new earth (BaO) in pyrolusite and Davy isolated the metal by electrolysis.[36]
42 Molybdenum 1778 1781 W. Scheele J. Hjelm Scheele recognised the metal as a constituent of molybdena.[37]
52 Tellurium 1782 F.-J.M. von Reichenstein H. Klaproth Muller observed it as an impurity in gold ores from Transylvania.[38]
74 Tungsten 1781 1783 T. Bergman J. and F. Elhuyar Bergman obtained from scheelite an oxide of a new element. The Elhuyars obtained tungstic acid from wolframite and reduced it with charcoal.[39]
38 Strontium 1787 1808 W. Cruikshank H. Davy Cruikshank and Adair Crawford in 1790 concluded that strontianite contained a new earth. It was eventually isolated electrochemically in 1808 by Humphry Davy.[40]
1789 A. Lavoisier The first modern list of chemical elements – containing, among others, 29 elements of those known then.[41] He also redefined the term "element". Until then, no metals except mercury were considered elements.
40 Zirconium 1789 1824 H. Klaproth J. Berzelius Klaproth identified a new element in zirconia.[42][43]
92 Uranium 1789 1841 H. Klaproth E.-M. Péligot Mistakenly identified a uranium oxide obtained from pitchblende as the element itself and named it after the recently discovered planet Uranus.[44][45]
22 Titanium 1791 1825 W. Gregor J. Berzelius Gregor found an oxide of a new metal in ilmenite; Martin Heinrich Klaproth independently discovered the element in rutile in 1795 and named it. The pure metallic form was only obtained in 1910 by Matthew A. Hunter.[46][47]
39 Yttrium 1794 1840 J. Gadolin G. Mosander Discovered in gadolinite, but Mosander showed later that its ore, yttria, contained more elements.[48][49]
24 Chromium 1797 1798 N. Vauquelin N. Vauquelin Vauquelin discovered the trioxide in crocoite ore, and later isolated the metal by heating the oxide in a charcoal oven.[50]
4 Beryllium 1798 1828 N. Vauquelin F. Wöhler and A. Bussy Vauquelin discovered the oxide in beryl and emerald, and Klaproth suggested the present name around 1808.[51]
23 Vanadium 1801 1830 M. del Río N.G.Sefström Río found the metal in vanadinite but retracted the claim after Hippolyte Victor Collet-Descotils disputed it. Sefström isolated and named it, and later it was shown that Río had been right in the first place.[52]
41 Niobium 1801 1864 C. Hatchett W. Blomstrand Hatchett found the element in columbite ore and named it columbium. Heinrich Rose proved in 1844 that the element is distinct from tantalum, and renamed it niobium which was officially accepted in 1949.[53]
73 Tantalum 1802 G. Ekeberg Ekeberg found another element in minerals similar to columbite and in 1844, Heinrich Rose proved that it was distinct from niobium.[54]
46 Palladium 1803 1803 H. Wollaston H. Wollaston Wollaston discovered it in samples of platinum from South America, but did not publish his results immediately. He had intended to name it after the newly discovered asteroid, Ceres, but by the time he published his results in 1804, cerium had taken that name. Wollaston named it after the more recently discovered asteroid Pallas.[55]
58 Cerium 1803 1839 H. Klaproth, J. Berzelius, and W. Hisinger G. Mosander Berzelius and Hisinger discovered the element in ceria and named it after the newly discovered asteroid (then considered a planet), Ceres. Klaproth discovered it simultaneously and independently in some tantalum samples. Mosander proved later that the samples of all three researchers had at least another element in them, lanthanum.[56]
76 Osmium 1803 1803 S. Tennant S. Tennant Tennant had been working on samples of South American platinum in parallel with Wollaston and discovered two new elements, which he named osmium and iridium.[57]
77 Iridium 1803 1803 S. Tennant S. Tennant Tennant had been working on samples of South American platinum in parallel with Wollaston and discovered two new elements, which he named osmium and iridium, and published the iridium results in 1804.[58]
45 Rhodium 1804 1804 H. Wollaston H. Wollaston Wollaston discovered and isolated it from crude platinum samples from South America.[59]
19 Potassium 1807 1807 H. Davy H. Davy Davy discovered it by using electrolysis on potash.[60]
11 Sodium 1807 1807 H. Davy H. Davy Davy discovered it a few days after potassium, by using electrolysis on sodium hydroxide.[61]
20 Calcium 1808 1808 H. Davy H. Davy Davy discovered the metal by electrolysis of quicklime.[61]
5 Boron 1808 1808 L. Gay-Lussac and L.J. Thénard H. Davy On June 21, 1808, Lussac and Thénard announced a new element in sedative salt, Davy announced the isolation of a new substance from boracic acid soon afterwards.[62]
9 Fluorine 1810 1886 A.-M. Ampère H. Moissan André-Marie Ampère predicted an element analogous to chlorine obtainable from hydrofluoric acid, and between 1812 and 1886 many researchers tried to obtain this element. It was eventually isolated by Moissan.[63]
53 Iodine 1811 1811 B. Courtois B. Courtois Courtois discovered it in the ashes of seaweed.[64]
3 Lithium 1817 1821 A. Arfwedson W. T. Brande Arfwedson discovered the alkali in petalite.[65]
48 Cadmium 1817 1817 S. L Hermann, F. Stromeyer, and J.C.H. Roloff S. L Hermann, F. Stromeyer, and J.C.H. Roloff All three found an unknown metal in a sample of zinc oxide from Silesia, but the name that Stromeyer gave became the accepted one.[66]
34 Selenium 1817 1817 J. Berzelius and G. Gahn J. Berzelius and G. Gahn While working with lead they discovered a substance that they thought was tellurium, but realized after more investigation that it is different.[67]
14 Silicon 1824 1824 J. Berzelius J. Berzelius Humphry Davy thought in 1800 that silica was an element, not a compound, and in 1808 suggested the present name. In 1811 Louis-Joseph Gay-Lussac and Louis-Jacques Thénard probably prepared impure silicon, but Berzelius is credited with the discovery for obtaining the pure element in 1824.[68]
13 Aluminium 1825 1825 H.C.Ørsted H.C.Ørsted Antoine Lavoisier predicted in 1787 that alumine is the oxide of an undiscovered element, and in 1808 Humphry Davy tried to decompose it. Although he failed, he suggested the present name. Hans Christian Ørsted was the first to isolate metallic aluminium in 1825.[69]
35 Bromine 1825 1825 J. Balard and L. Gmelin J. Balard and L. Gmelin They both discovered the element in the autumn of 1825 and published the results the next year.[70]
90 Thorium 1829 J. Berzelius Berzelius obtained the oxide of a new earth in thorite.[71]
57 Lanthanum 1838 G. Mosander Mosander found a new element in samples of ceria and published his results in 1842, but later he showed that this lanthana contained four more elements.[72]
68 Erbium 1842 G. Mosander Mosander managed to split the old yttria into yttria proper and erbia, and later terbia too.[73]
65 Terbium 1842 1842 G. Mosander G. Mosander In 1842 Mosander split yttria into two more earths, erbia and terbia[74]
44 Ruthenium 1844 1844 K. Claus K. Claus Gottfried Wilhelm Osann thought that he found three new metals in Russian platinum samples, and in 1844 Karl Karlovich Klaus confirmed that there was a new element.[75]
55 Caesium 1860 1882 R. Bunsen and R. Kirchhoff C. Setterberg Bunsen and Kirchhoff were the first to suggest finding new elements by spectrum analysis. They discovered caesium by its two blue emission lines in a sample of Dürkheim mineral water.[76] The pure metal was eventually isolated in 1882 by Setterberg.[77]
37 Rubidium 1861 R. Bunsen and G. R. Kirchhoff R. Bunsen Bunsen and Kirchhoff discovered it just a few months after caesium, by observing new spectral lines in the mineral lepidolite. Bunsen never obtained a pure sample of the metal, which was later obtained by Hervesy.[78]
81 Thallium 1861 1862 W. Crookes C.-A. Lamy Shortly after the discovery of rubidium, Crookes found a new green line in a selenium sample; later that year, Lamy found the element to be metallic.[79]
49 Indium 1863 1867 F. Reich and T. Richter T. Richter Reich and Richter First identified it in sphalerite by its bright indigo-blue spectroscopic emission line. Richter isolated the metal several years later.[80]
2 Helium 1868 1895 P. Janssen and N. Lockyer W. Ramsay, T. Cleve, and N. Langlet Janssen and Lockyer observed independently a yellow line in the solar spectrum that did not match any other element.

Years later, Ramsay, Cleve, and Langlet observed independently the element trapped in cleveite about the same time.[81]

1869 D. I. Mendeleev Mendeleev arranges the 64 elements known at that time into the first modern periodic table and correctly predicts several others.
31 Gallium 1875 P. E. L. de Boisbaudran P. E. L. de Boisbaudran Boisbaudran observed on a pyrenea blende sample some emission lines corresponding to the eka-aluminium that was predicted by Mendeleev in 1871 and subsequently isolated the element by electrolysis.[82]
70 Ytterbium 1878 1907 J.C.G. de Marignac G. Urbain On October 22, 1878, Marignac reported splitting terbia into two new earths, terbia proper and ytterbia.[83]
67 Holmium 1878 M. Delafontaine Delafontaine found it in samarskite and next year, Per Teodor Cleve split Marignac's erbia into erbia proper and two new elements, thulium and holmium.[84]
69 Thulium 1879 1879 T. Cleve T. Cleve Cleve split Marignac's erbia into erbia proper and two new elements, thulium and holmium.[85]
21 Scandium 1879 1879 F. Nilson F. Nilson Nilson split Marignac's ytterbia into pure ytterbia and a new element that matched 1871 Mendeleev's predicted eka-boron.[86]
62 Samarium 1879 1879 P.E.L. de Boisbaudran P.E.L. de Boisbaudran Boisbaudran noted a new earth in samarskite and named it samaria after the mineral.[87]
64 Gadolinium 1880 1886 J. C. G. de Marignac F. L. de Boisbaudran Marignac initially observed the new earth in terbia, and later Boisbaudran obtained a pure sample from samarskite.[88]
59 Praseodymium 1885 A. von Welsbach Von Welsbach discovered two new distinct elements in ceria: praseodymium and neodymium.[89]
60 Neodymium 1885 A. von Welsbach Von Welsbach discovered two new distinct elements in ceria: praseodymium and neodymium.[90]
66 Dysprosium 1886 P.E.L. de Boisbaudran De Boisbaudran found a new earth in erbia.[90]
32 Germanium 1886 A. Winkler In February 1886 Winkler found in argyrodite the eka-silicon that Mendeleev had predicted in 1871.[91]
18 Argon 1894 1894 Lord Rayleigh and W. Ramsay Lord Rayleigh and W. Ramsay They discovered the gas by comparing the molecular weights of nitrogen prepared by liquefaction from air and nitrogen prepared by chemical means. It is the first noble gas to be isolated.[92]
36 Krypton 1898 1898 W. Ramsay and W. Travers W. Ramsay and W. Travers On May 30, 1898, Ramsay separated a noble gas from liquid argon by difference in boiling point.[93]
10 Neon 1898 1898 W. Ramsay and W. Travers W. Ramsay and W. Travers In June 1898 Ramsay separated a new noble gas from liquid argon by difference in boiling point.[93]
54 Xenon 1898 1898 W. Ramsay and W. Travers W. Ramsay and W. Travers On July 12, 1898 Ramsay separated a third noble gas within three weeks, from liquid argon by difference in boiling point.[94]
84 Polonium 1898 1902 P. and M. Curie W. Marckwald In an experiment done on July 13, 1898, the Curies noted an increased radioactivity in the uranium obtained from pitchblende, which they ascribed to an unknown element.[95]
88 Radium 1898 1902 P. and M. Curie M. Curie The Curies reported on December 26, 1898, a new element different from polonium, which Marie later isolated from uraninite.[96]
86 Radon 1898 1910 E. Dorn W. Ramsay and R. Whytlaw-Gray Dorn discovered a radioactive gas resulting from the radioactive decay of radium, isolated later by Ramsay and Gray.[97][98]
89 Actinium 1899 1899 A.-L. Debierne A.-L. Debierne Debierne obtained from pitchblende a substance that had properties similar to those of thorium.[99]
63 Europium 1896 1901 E.-A. Demarçay E.-A. Demarçay Demarçay found spectral lines of a new element in Lecoq's samarium, and separated this element several years later.[100]
71 Lutetium 1906 1906 G. Urbain and C.A. von Welsbach G. Urbain and C.A. von Welsbach Urbain and von Welsbach proved independently that the old ytterbium also contained a new element.[101]
75 Rhenium 1908 1925 M. Ogawa M. Ogawa Ogawa found it in thorianite but assigned it as element 43 instead of 75 and named it nipponium.[102] In 1922 Walter Noddack, Ida Eva Tacke and Otto Berg announced its separation from gadolinite and gave it the present name.[59]
72 Hafnium 1911 1922 G. Urbain and V. Vernadsky D. Coster and G. von Hevesy Urbain claimed to have found the element in rare-earth residues, while Vernadsky independently found it in orthite. Neither claim was confirmed due to World War I. After the war, Coster and Hevesy found it by X-ray spectroscopic analysis in Norwegian zircon.[103] Hafnium was the last stable element to be discovered.[104]
91 Protactinium 1913 O.H.Göhring and K. Fajans The two obtained the first isotope of this element that had been predicted by Mendeleev in 1871 as a member of the natural decay of 238U.[105] Originally isolated in 1900 by William Crookes.[106]
43 Technetium 1937 1937 C. Perrier and E. Segrè C. Perrier & E.Segrè The two discovered a new element in a molybdenum sample that was used in a cyclotron, the first synthetic element to be discovered. It had been predicted by Mendeleev in 1871 as eka-manganese.[107][108]
87 Francium 1939 M. Perey Perey discovered it as a decay product of 227Ac.[109] Francium is the last element to be discovered in nature, rather than synthesized in the lab, although some of the "synthetic" elements that were discovered later (plutonium, neptunium, astatine) were eventually found in trace amounts in nature as well.[110]
85 Astatine 1940 R. Corson, R. MacKenzie and E. Segrè Obtained by bombarding bismuth with alpha particles.[111] Later determined to occur naturally in minuscule quantities (<25 grams in earth's crust).[112]
93 Neptunium 1940 E.M. McMillan and H. Abelson Obtained by irradiating uranium with neutrons, it is the first transuranium element discovered.[113]
94 Plutonium 1940–1941 Glenn T. Seaborg, Arthur C. Wahl, W. Kennedy and E.M. McMillan Prepared by bombardment of uranium with deuterons.[114]
95 Americium 1944 G. T. Seaborg, A. James, O. Morgan and A. Ghiorso Prepared by irradiating plutonium with neutrons during the Manhattan Project.[115]
96 Curium 1944 G. T. Seaborg, R. A. James and A. Ghiorso Prepared by bombarding plutonium with alpha particles during the Manhattan Project[116]
61 Promethium 1942 1945 S. Wu, E.G. Segrè and A. Bethe Charles D. Coryell, Jacob A. Marinsky, Lawrence E. Glendenin, and Harold G. Richter It was probably first prepared in 1942 by bombarding neodymium and praseodymium with neutrons, but separation of the element could not be carried out. Isolation was performed under the Manhattan Project in 1945.[89]
97 Berkelium 1949 G. Thompson, A. Ghiorso and G. T. Seaborg (University of California, Berkeley) Created by bombardment of americium with alpha particles.[117]
98 Californium 1950 S. G. Thompson, K. Street,Jr., A. Ghiorso and G. T. Seaborg (University of California, Berkeley) Bombardment of curium with alpha particles.[118]
99 Einsteinium 1952 1952 A. Ghiorso et al. (Argonne Laboratory, Los Alamos Laboratory and University of California, Berkeley) Formed in the first thermonuclear explosion in November 1952, by irradiation of uranium with neutrons; kept secret for several years.[119]
100 Fermium 1952 A. Ghiorso et al. (Argonne Laboratory, Los Alamos Laboratory and University of California, Berkeley) Formed in the first thermonuclear explosion in November 1952, by irradiation of uranium with neutrons; kept secret for several years.[120]
101 Mendelevium 1955 A. Ghiorso, G. Harvey, R. Choppin, S. G. Thompson and G. T. Seaborg Prepared by bombardment of einsteinium with helium.[121]
102 Nobelium 1958 A. Ghiorso, T. Sikkeland, R. Walton and G. T. Seaborg First prepared by bombardment of curium with carbon atoms.[122]
103 Lawrencium 1961 A. Ghiorso, T. Sikkeland, E. Larsh and M. Latimer First prepared by bombardment of californium with boron atoms.[123]
104 Rutherfordium 1968 A. Ghiorso, M. Nurmia, J. Harris, K. Eskola and P. Eskola Prepared by bombardment of californium with carbon atoms.[124]
105 Dubnium 1970 A. Ghiorso, M. Nurmia, K. Eskola, J. Harris and P. Eskola Prepared by bombardment of californium with nitrogen atoms.[125]
106 Seaborgium 1974 A. Ghiorso, J. Nitschke, J. Alonso, C. Alonso, M. Nurmia, G. T. Seaborg, K. Hulet and W. Lougheed Prepared by collisions of californium-249 with oxygen atoms.[126]
107 Bohrium 1981 G.Münzenberg et al. (GSI in Darmstadt) Obtained by bombarding bismuth with chromium.[127]
109 Meitnerium 1982 G. Münzenberg, P. Armbruster et al. (GSI in Darmstadt) Prepared by bombardment of bismuth with iron atoms.[128]
108 Hassium 1984 G. Münzenberg, P. Armbruster et al. (GSI in Darmstadt) Prepared by bombardment of lead with iron atoms[129]
110 Darmstadtium 1994 S. Hofmann et al. (GSI in Darmstadt) Prepared by bombardment of lead with nickel.[130]
111 Roentgenium 1994 S. Hofmann et al. (GSI in Darmstadt) Prepared by bombardment of bismuth with nickel.[131]
112 Copernicium 1996 S. Hofmann et al. (GSI in Darmstadt) Prepared by bombardment of lead with zinc.[132][133]
114 Flerovium 1999 Y. Oganessian et al. (JINR in Dubna) Prepared by bombardment of plutonium with calcium[134]
116 Livermorium 2000 Y. Oganessian et al. (JINR in Dubna) Prepared by bombardment of curium with calcium[135]
118 Ununoctium 2002 Y. Oganessian et al. (JINR in Dubna) Prepared by bombardment of californium with calcium[136]
115 Ununpentium 2003 Y. Oganessian et al. (JINR in Dubna) Prepared by bombardment of americium with calcium[137]
113 Ununtrium 2004 K. Morita et al. (RIKEN in Wako, Japan) Prepared by bombardment of bismuth with zinc[138]
117 Ununseptium 2010 Y. Oganessian et al. (JINR in Dubna) Prepared by bombardment of berkelium with calcium[139]

Graphics

Development in discovery

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. CSA – Discovery Guides, A Brief History of Copper
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. 47 Silver
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.[dead link]
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. Lua error in package.lua at line 80: module 'strict' not found.
  17. Craddock, P. T. et al. (1983), "Zinc production in medieval India", World Archaeology 15 (2), Industrial Archaeology, p. 13
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.
  20. 20.0 20.1 Lua error in package.lua at line 80: module 'strict' not found.
  21. Lua error in package.lua at line 80: module 'strict' not found.
  22. Lua error in package.lua at line 80: module 'strict' not found.
  23. Lua error in package.lua at line 80: module 'strict' not found.
  24. Lua error in package.lua at line 80: module 'strict' not found.
  25. Lua error in package.lua at line 80: module 'strict' not found.
  26. Lua error in package.lua at line 80: module 'strict' not found.
  27. Lua error in package.lua at line 80: module 'strict' not found.
  28. Lua error in package.lua at line 80: module 'strict' not found.
  29. Lua error in package.lua at line 80: module 'strict' not found.
  30. Lua error in package.lua at line 80: module 'strict' not found.
  31. Lua error in package.lua at line 80: module 'strict' not found.
  32. Lua error in package.lua at line 80: module 'strict' not found.
  33. Lua error in package.lua at line 80: module 'strict' not found.
  34. Lua error in package.lua at line 80: module 'strict' not found.
  35. Lua error in package.lua at line 80: module 'strict' not found.
  36. Lua error in package.lua at line 80: module 'strict' not found.
  37. Lua error in package.lua at line 80: module 'strict' not found.
  38. Lua error in package.lua at line 80: module 'strict' not found.
  39. Lua error in package.lua at line 80: module 'strict' not found.
  40. Lua error in package.lua at line 80: module 'strict' not found.
  41. Lua error in package.lua at line 80: module 'strict' not found.[dead link]
  42. Lua error in package.lua at line 80: module 'strict' not found.
  43. Lua error in package.lua at line 80: module 'strict' not found.
  44. Lua error in package.lua at line 80: module 'strict' not found.
  45. Lua error in package.lua at line 80: module 'strict' not found.
  46. Lua error in package.lua at line 80: module 'strict' not found.
  47. Lua error in package.lua at line 80: module 'strict' not found.
  48. Lua error in package.lua at line 80: module 'strict' not found.
  49. Lua error in package.lua at line 80: module 'strict' not found.
  50. Lua error in package.lua at line 80: module 'strict' not found.
  51. Lua error in package.lua at line 80: module 'strict' not found.
  52. Lua error in package.lua at line 80: module 'strict' not found.
  53. Lua error in package.lua at line 80: module 'strict' not found.
  54. Lua error in package.lua at line 80: module 'strict' not found.
  55. Lua error in package.lua at line 80: module 'strict' not found.
  56. Lua error in package.lua at line 80: module 'strict' not found.
  57. Lua error in package.lua at line 80: module 'strict' not found.
  58. Lua error in package.lua at line 80: module 'strict' not found.
  59. 59.0 59.1 Lua error in package.lua at line 80: module 'strict' not found.
  60. Lua error in package.lua at line 80: module 'strict' not found.
  61. 61.0 61.1 Lua error in package.lua at line 80: module 'strict' not found.
  62. Lua error in package.lua at line 80: module 'strict' not found.
  63. Lua error in package.lua at line 80: module 'strict' not found.
  64. Lua error in package.lua at line 80: module 'strict' not found.
  65. Lua error in package.lua at line 80: module 'strict' not found.
  66. Lua error in package.lua at line 80: module 'strict' not found.
  67. Lua error in package.lua at line 80: module 'strict' not found.
  68. Lua error in package.lua at line 80: module 'strict' not found.
  69. Lua error in package.lua at line 80: module 'strict' not found.
  70. Lua error in package.lua at line 80: module 'strict' not found.
  71. Lua error in package.lua at line 80: module 'strict' not found.
  72. Lua error in package.lua at line 80: module 'strict' not found.
  73. Lua error in package.lua at line 80: module 'strict' not found.
  74. Lua error in package.lua at line 80: module 'strict' not found.
  75. Lua error in package.lua at line 80: module 'strict' not found.
  76. Lua error in package.lua at line 80: module 'strict' not found.
  77. Caesium
  78. Lua error in package.lua at line 80: module 'strict' not found.
  79. Lua error in package.lua at line 80: module 'strict' not found.
  80. Lua error in package.lua at line 80: module 'strict' not found.
  81. Lua error in package.lua at line 80: module 'strict' not found.
  82. Lua error in package.lua at line 80: module 'strict' not found.
  83. Lua error in package.lua at line 80: module 'strict' not found.
  84. Lua error in package.lua at line 80: module 'strict' not found.
  85. Lua error in package.lua at line 80: module 'strict' not found.
  86. Lua error in package.lua at line 80: module 'strict' not found.
  87. Lua error in package.lua at line 80: module 'strict' not found.
  88. Lua error in package.lua at line 80: module 'strict' not found.
  89. 89.0 89.1 Lua error in package.lua at line 80: module 'strict' not found.
  90. 90.0 90.1 Lua error in package.lua at line 80: module 'strict' not found.
  91. Lua error in package.lua at line 80: module 'strict' not found.
  92. Lua error in package.lua at line 80: module 'strict' not found.
  93. 93.0 93.1 Lua error in package.lua at line 80: module 'strict' not found.
  94. Lua error in package.lua at line 80: module 'strict' not found.
  95. Lua error in package.lua at line 80: module 'strict' not found.
  96. Lua error in package.lua at line 80: module 'strict' not found.
  97. Lua error in package.lua at line 80: module 'strict' not found.
  98. Lua error in package.lua at line 80: module 'strict' not found.
  99. Lua error in package.lua at line 80: module 'strict' not found.
  100. Lua error in package.lua at line 80: module 'strict' not found.
  101. Lua error in package.lua at line 80: module 'strict' not found.
  102. http://www.maik.ru/abstract/radchem/0/radchem0535_abstract.pdf
  103. Lua error in package.lua at line 80: module 'strict' not found.
  104. Lua error in package.lua at line 80: module 'strict' not found.
  105. Lua error in package.lua at line 80: module 'strict' not found.
  106. Lua error in package.lua at line 80: module 'strict' not found.
  107. Lua error in package.lua at line 80: module 'strict' not found.
  108. History of the Origin of the Chemical Elements and Their Discoverers, Individual Element Names and History, "Technetium"
  109. Lua error in package.lua at line 80: module 'strict' not found.
  110. Adloff, Jean-Pierre; Kaufman, George B. (2005-09-25). Francium (Atomic Number 87), the Last Discovered Natural Element. The Chemical Educator 10 (5). [2007-03-26]
  111. Lua error in package.lua at line 80: module 'strict' not found.
  112. Lua error in package.lua at line 80: module 'strict' not found.
  113. Lua error in package.lua at line 80: module 'strict' not found.
  114. Lua error in package.lua at line 80: module 'strict' not found.
  115. Lua error in package.lua at line 80: module 'strict' not found.
  116. Lua error in package.lua at line 80: module 'strict' not found.
  117. Lua error in package.lua at line 80: module 'strict' not found.
  118. Lua error in package.lua at line 80: module 'strict' not found.
  119. Lua error in package.lua at line 80: module 'strict' not found.
  120. Lua error in package.lua at line 80: module 'strict' not found.
  121. Lua error in package.lua at line 80: module 'strict' not found.
  122. Lua error in package.lua at line 80: module 'strict' not found.
  123. Lua error in package.lua at line 80: module 'strict' not found.
  124. Lua error in package.lua at line 80: module 'strict' not found.
  125. Lua error in package.lua at line 80: module 'strict' not found.
  126. Lua error in package.lua at line 80: module 'strict' not found.
  127. Lua error in package.lua at line 80: module 'strict' not found.
  128. Lua error in package.lua at line 80: module 'strict' not found.
  129. Lua error in package.lua at line 80: module 'strict' not found.
  130. Lua error in package.lua at line 80: module 'strict' not found.
  131. Lua error in package.lua at line 80: module 'strict' not found.
  132. Lua error in package.lua at line 80: module 'strict' not found.
  133. Lua error in package.lua at line 80: module 'strict' not found.
  134. Lua error in package.lua at line 80: module 'strict' not found.
  135. Lua error in package.lua at line 80: module 'strict' not found.
  136. Lua error in package.lua at line 80: module 'strict' not found.
  137. Lua error in package.lua at line 80: module 'strict' not found.
  138. Lua error in package.lua at line 80: module 'strict' not found.
  139. Lua error in package.lua at line 80: module 'strict' not found.

External links