FMA instruction set

From Infogalactic: the planetary knowledge core
(Redirected from FMA4 instruction set)
Jump to: navigation, search

The FMA instruction set is an extension to the 128 and 256-bit Streaming SIMD Extensions instructions in the x86 microprocessor instruction set to perform fused multiply–add (FMA) operations.[1] There are two variants:

New instructions

FMA3 and FMA4 instructions have almost identical functionality but are not compatible. Both contain fused multiply–add (FMA) instructions for floating point scalar and SIMD operations, but FMA3 instructions have three operands while FMA4 ones have four. The FMA operation has the form d = round(a × b + c) where the round function performs a rounding to allow the result to fit within the destination register if there are too many significant bits to fit within the destination.

The 4-operand form (FMA4) allows a, b, c and d to be four different registers, while the 3-operand form (FMA3) requires that d be the same register as a, b or c. The 3-operand form makes the code shorter and the hardware implementation slightly simpler while the 4-operand form provides more programming flexibility.

See XOP instruction set for more discussion of compatibility issues between Intel and AMD.

FMA3 instruction set

CPUs with FMA3

  • Intel
    • Intel introduced hardware FMA3 in processors based on Haswell during 2013.
  • AMD
    • AMD introduced FMA3 support in processors starting with Piledriver architecture for compatibility reasons.[2][3] The 2nd generation APU processors based on "Trinity" (32nm) supporting FMA3 instructions were launched May 15, 2012. The 2nd generation Bulldozer processors with Piledriver cores supporting FMA3 instructions were launched October 23, 2012.

Excerpt from FMA3

Mnemonic (AT&T) Operands Operation
VFMADD132PDy ymm, ymm, ymm/m256 $0 = $0×$2 + $1
VFMADD132PSy
VFMADD132PDx xmm, xmm, xmm/m128
VFMADD132PSx
VFMADD132SD xmm, xmm, xmm/m64
VFMADD132SS xmm, xmm, xmm/m32
VFMADD213PDy ymm, ymm, ymm/m256 $0 = $1×$0 + $2
VFMADD213PSy
VFMADD213PDx xmm, xmm, xmm/m128
VFMADD213PSx
VFMADD213SD xmm, xmm, xmm/m64
VFMADD213SS xmm, xmm, xmm/m32
VFMADD231PDy ymm, ymm, ymm/m256 $0 = $1×$2 + $0
VFMADD231PSy
VFMADD231PDx xmm, xmm, xmm/m128
VFMADD231PSx
VFMADD231SD xmm, xmm, xmm/m64
VFMADD231SS xmm, xmm, xmm/m32

FMA4 instruction set

CPUs with FMA4

  • AMD
  • Intel
    • It is uncertain whether future Intel processors will support FMA4, due to Intel's announced change to FMA3.

Excerpt from FMA4

Mnemonic (AT&T) Operands Operation
VFMADDPDx xmm, xmm, xmm/m128, xmm/m128 $0 = $1×$2 + $3
VFMADDPDy ymm, ymm, ymm/m256, ymm/m256
VFMADDPSx xmm, xmm, xmm/m128, xmm/m128
VFMADDPSy ymm, ymm, ymm/m256, ymm/m256
VFMADDSD xmm, xmm, xmm/m64, xmm/m64
VFMADDSS xmm, xmm, xmm/m32, xmm/m32

History

The incompatibility between Intel's FMA3 and AMD's FMA4 is due to both companies changing plans without coordinating coding details with each other. AMD changed their plans from FMA3 to FMA4 while Intel changed their plans from FMA4 to FMA3 almost at the same time. The history can be summarized as follows:

  • August 2007: AMD announces the SSE5 instruction set, which includes 3-operand FMA instructions. A new coding scheme (DREX) is introduced for allowing instructions to have three operands.[6]
  • April 2008: Intel announces their AVX and FMA instruction sets, including 4-operand FMA instructions. The coding of these instructions uses the new VEX coding scheme which is more flexible than AMD's DREX scheme. (Section requires an actual source, Intel sources are not acceptable for debatable specifics.)[7]
  • December 2008: Intel changes the specification for their FMA instructions from 4-operand to 3-operand instructions. The VEX coding scheme is still used.[8]
  • May 2009: AMD changes the specification of their FMA instructions from the 3-operand DREX form to the 4-operand VEX form, compatible with the April 2008 Intel specification rather than the December 2008 Intel specification.[9]
  • October 2011: AMD Bulldozer processor supports FMA4.[10]
  • January 2012: AMD announces FMA3 support in future processors codenamed Trinity and Vishera; they are based on the Piledriver architecture.[11]
  • May 2012: AMD Piledriver processor supports both FMA3 and FMA4.[10]
  • June 2013: Intel Haswell processor supports FMA3.[12]

AMD explicitly revealed that Zen, its 3rd-generation x86-64 architecture in its first iteration (znver1 – Zen, version 1); would drop support for FMA4 in a patch to the GNU Binutils package.[13] There has been initial confusion regarding whether FMA4 was implemented or not due to errata in the initial patch that has since then been rectified.[14]

Compiler and assembler support

Different compilers provide different levels of support for FMA4:

References

  1. "FMA3 and FMA4 are not instruction sets, they are individual instructions -- fused multiply add. They could be quite useful depending on how Intel and AMD implement them" Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. 10.0 10.1 Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. https://sourceware.org/ml/binutils/2015-03/msg00078.html
  14. https://sourceware.org/ml/binutils/2015-08/msg00039.html
  15. 15.0 15.1 Lua error in package.lua at line 80: module 'strict' not found.
  16. Lua error in package.lua at line 80: module 'strict' not found.
  17. Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.