File:Embryonic Development CNS.png

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Embryonic_Development_CNS.png(350 × 325 pixels, file size: 23 KB, MIME type: image/png)

Summary

Formation of the neural tube (cross view). Early in an embryo’s development, a strip of specialized cells called the notochord (A) induces the cells of the ectoderm directly above it to become the primitive nervous system (i.e., neuroepithelium). The neuroepithelium then wrinkles and folds over (B). As the tips of the folds fuse together, a hollow tube (i.e., the neural tube) forms (C)—the precursor of the brain and spinal cord. Meanwhile, the ectoderm and endoderm continue to curve around and fuse beneath the embryo to create the body cavity, completing the transformation of the embryo from a flattened disk to a three–dimensional body. Cells originating from the fused tips of the neuroectoderm (i.e., neural crest cells) migrate to various locations throughout the embryo, where they will initiate the development of diverse body structures (D). Researchers investigating fetal alcohol syndrome have extensively studied neural crest cells, because they are particularly sensitive to alcohol–induced injury and cell death.

Licensing

Lua error in package.lua at line 80: module 'strict' not found.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current09:15, 7 January 2017Thumbnail for version as of 09:15, 7 January 2017350 × 325 (23 KB)127.0.0.1 (talk)Formation of the neural tube (cross view). Early in an embryo’s development, a strip of specialized cells called the notochord (A) induces the cells of the ectoderm directly above it to become the primitive nervous system (i.e., neuroepithelium). The neuroepithelium then wrinkles and folds over (B). As the tips of the folds fuse together, a hollow tube (i.e., the neural tube) forms (C)—the precursor of the brain and spinal cord. Meanwhile, the ectoderm and endoderm continue to curve around and fuse beneath the embryo to create the body cavity, completing the transformation of the embryo from a flattened disk to a three–dimensional body. Cells originating from the fused tips of the neuroectoderm (i.e., neural crest cells) migrate to various locations throughout the embryo, where they will initiate the development of diverse body structures (D). Researchers investigating fetal alcohol syndrome have extensively studied neural crest cells, because they are particularly sensitive to alcohol–induced injury and cell death.
  • You cannot overwrite this file.

The following 3 pages link to this file: