Fullerene chemistry

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Fullerene C60

Fullerene chemistry is a field of organic chemistry devoted to the chemical properties of fullerenes.[1][2][3] Research in this field is driven by the need to functionalize fullerenes and tune their properties. For example, fullerene is notoriously insoluble and adding a suitable group can enhance solubility.[1] By adding a polymerizable group, a fullerene polymer can be obtained. Functionalized fullerenes are divided into two classes: exohedral fullerenes with substituents outside the cage and endohedral fullerenes with trapped molecules inside the cage.

Chemical properties of fullerenes

Fullerene or C60 is soccer-ball-shaped or Ih with 12 pentagons and 20 hexagons. According to Euler's theorem these 12 pentagons are required for closure of the carbon network consisting of n hexagons and C60 is the first stable fullerene because it is the smallest possible to obey this rule. In this structure none of the pentagons make contact with each other. Both C60 and its relative C70 obey this so-called isolated pentagon rule (IPR). The next homologue C84 has 24 IPR isomers of which several are isolated and another 51,568 non-IPR isomers. Non-IPR fullerenes have thus far only been isolated as endohedral fullerenes such as Tb3N@C84 with two fused pentagons at the apex of an egg-shaped cage.[4] or as fullerenes with exohedral stabilization such as C50Cl10 [5] and reportedly C60H8.[6] Lower fullerenes do not obey isolated pentagon rule(IPR).

Because of the molecule's spherical shape the carbon atoms are highly pyramidalized, which has far-reaching consequences for reactivity. It is estimated that strain energy constitutes 80% of the heat of formation. The conjugated carbon atoms respond to deviation from planarity by orbital rehybridization of the sp² orbitals and pi orbitals to a sp2.27 orbital with a gain in p-character. The p lobes extend further outside the surface than they do into the interior of the sphere and this is one of the reasons a fullerene is electronegative. The other reason is that the empty low-lying pi* orbitals also have a high s character.

The double bonds in fullerene are not all the same. Two groups can be identified: 30 so-called [6,6] double bonds connect two hexagons and 60 [5,6] bonds connect a hexagon and a pentagon. Of the two the [6,6] bonds are shorter with more double-bond character and therefore a hexagon is often represented as a cyclohexatriene and a pentagon as a pentalene or [5]radialene. In other words, although the carbon atoms in fullerene are all conjugated the superstructure is not a super aromatic compound. The X-ray diffraction bond length values are 139.1 pm for the [6,6] bond and 145.5 pm for the [5,6] bond.

C60 fullerene has 60 pi electrons but a closed shell configuration requires 72 electrons. The fullerene is able to acquire the missing electrons by reaction with potassium to form first the K
salt and then the K
In this compound the bond length alternation observed in the parent molecule has vanished.

Fullerene reactions

Fullerenes tend to react as electrophiles. An additional driving force is relief of strain when double bonds become saturated. Key in this type of reaction is the level of functionalization i.e. monoaddition or multiple additions and in case of multiple additions their topological relationships (new substituents huddled together or evenly spaced). In conformity with IUPAC rules, the terms methanofullerene are used to indicate the ring-closed (cyclopropane) fullerene derivatives, and fulleroid to ring-open (methanoannulene) structures.[7][8]

Nucleophilic addition

Fullerenes react as electrophiles with a host of nucleophiles in nucleophilic additions. The intermediary formed carbanion is captured by another electrophile. Examples of nucleophiles are Grignard reagents and organolithium reagents. For example the reaction of C60 with methylmagnesium chloride stops quantitatively at the penta-adduct with the methyl groups centered around a cyclopentadienyl anion which is subsequently protonated.[9] Another nucleophilic reaction is the Bingel reaction. Fullerene reacts with chlorobenzene and aluminium chloride in a Friedel-Crafts alkylation type reaction. In this hydroarylation the reaction product is the 1,2-addition adduct (Ar-CC-H).[10]

Pericyclic reactions

The [6,6] bonds of fullerenes react as dienes or dienophiles in cycloadditions for instance Diels-Alder reactions. 4-membered rings can be obtained by [2+2]cycloadditions for instance with benzyne.[11][12] An example of a 1,3-dipolar cycloaddition to a 5-membered ring is the Prato reaction.


Fullerenes are easily hydrogenated by several methods. Examples of hydrofullerenes are C60H18 and C60H36. However, completely hydrogenated C60H60 is only hypothetical because of large strain. Highly hydrogenated fullerenes are not stable, as prolonged hydrogenation of fullerenes by direct reaction with hydrogen gas at high temperature conditions results in cage fragmentation. At the final reaction stage this causes collapse of cage structure with formation of polycyclic aromatic hydrocarbons.[13]


Although more difficult than reduction, oxidation of fullerene is possible for instance with oxygen and osmium tetraoxide.


Fullerenes can be hydroxylated to fullerenols or fullerols. Water solubility depends on the total number of hydroxyl groups that can be attached. One method is fullerene reaction in diluted sulfuric acid and potassium nitrate to C60(OH)15.[14][15] Another method is reaction in diluted sodium hydroxide catalysed by TBAH adding 24 to 26 hydroxyl groups.[16] Hydroxylation has also been reported using solvent-free NaOH / hydrogen peroxide.[17] C60(OH)8 was prepared using a multistep procedure starting from a mixed peroxide fullerene.[18] The maximum number of hydroxyl groups that can be attached (hydrogen peroxide method) stands at 36–40.[19]

Electrophilic addition

Fullerenes react in electrophilic additions as well. The reaction with bromine can add up to 24 bromine atoms to the sphere. The record holder for fluorine addition is C60F48. According to in silico predictions the as yet elusive C60F60 may have some of the fluorine atoms in endo positions (pointing inwards) and may resemble a tube more than it does a sphere.[20]

Retro additions

Protocols have been investigated for removing substituents via retroadditions after they have served their purpose. Examples are the retro-Bingel reaction and the retro-Prato reaction.

Carbene additions

Fullerenes react with carbenes to methanofullerenes.[21] The reaction of fullerene with dichlorocarbene (created by sodium trichloroacetate pyrolysis) was first reported in 1993.[22] A single addition takes place along a [6,6] bond.

Radical additions

Fullerenes can be considered radical scavengers.[23][24] With a simple hydrocarbon radical such as the t-butyl radical obtained by thermolysis or photolysis from a suitable precursor the tBuC60 radical is formed that can be studied. The unpaired electron does not delocalize over the entire sphere but takes up positions in the vicinity of the tBu substituent.

Fullerenes as ligands

Fullerene is a ligand in organometallic chemistry. The [6,6] double bond is electron-deficient and usually forms metallic bonds with η = 2 hapticity. Bonding modes such as η = 5 or η = 6 can be induced by modification of the coordination sphere.

Multistep fullerene synthesis

Although the procedure for the synthesis of the C60 fullerene is well established (generation of a large current between two nearby graphite electrodes in an inert atmosphere) a 2002 study described an organic synthesis of the compound starting from simple organic compounds.[26][27]

Multistep fullerene synthesis

In the final step a large polycyclic aromatic hydrocarbon consisting of 13 hexagons and three pentagons was submitted to flash vacuum pyrolysis at 1100 °C and 0.01 Torr. The three carbon chlorine bonds served as free radical incubators and the ball was stitched up in a no-doubt complex series of radical reactions. The chemical yield was low: 0.1 to 1%. A small percentage of fullerenes is formed in any process which involves burning of hydrocarbons, e.g. in candle burning. The yield through a combustion method is often above 1%. The method proposed above does not provide any advantage for synthesis of fullerenes compared to the usual combustion method, and therefore, the organic synthesis of fullerenes remains a challenge for chemistry.

A similar exercise aimed at construction of a C78 cage in 2008 (but leaving out the precursor's halogens) did not result in a sufficient yield but at least the introduction of Stone Wales defects could be ruled out.[28] C60 synthesis through a fluorinated fullerene precursor was reported in 2013 [29]

Multistep nanoribbon synthesis

In the field of graphene nanoribbons a bottom-up approach has also been investigated [30][31]

Open-cage fullerenes

A part of fullerene research is devoted to so-called open-cage fullerenes [32] whereby one or more bonds are removed chemically exposing an orifice.[33] In this way it is possible to insert into it small molecules such as hydrogen, helium or lithium. The first such open-cage fullerene was reported in 1995.[34] In endohedral hydrogen fullerenes the opening, hydrogen insertion and closing back up has already been demonstrated.


In heterofullerenes at least one carbon atom is replaced by another element.[35][36] Based on spectroscopy, substitutions have been reported with boron (borafullerenes),[37][38] nitrogen (azafullerenes),[39][40] oxygen,[41] arsenic, germanium,[42] phosphorus,[43] silicon,[44][45] iron, copper, nickel, rhodium [45][46] and iridium.[45] Reports on isolated heterofullerenes are limited to those based on nitrogen [47][48][49][50] and oxygen.[51]

Fullerene dimers

The C60 fullerene dimerizes in a formal [2+2] cycloaddition to a C120 bucky dumbbell in the solid state by mechanochemistry (high-speed vibration milling) with potassium cyanide as a catalyst.[52] The trimer has also been reported using 4-aminopyridine as catalyst (4% yield) [53] and observed with scanning tunneling microscopy as a monolayer.[54]

Nanotube chemistry

Carbon nanotubes, also part of the fullerene family, can be described as graphene sheets rolled into a cylindrical tube. Unlike the spherical fullerenes made up of hexagons and pentagons, nanotubes only have hexagons present but in terms of reactivity both systems have much in common. Due to electrostatic forces nanotubes have a nasty tendency to cluster together into bundles and many potential applications require an exfoliation process. One way to do this is by chemical surface modification.

A useful tool for the analysis of derivatised nanotubes is Raman spectroscopy which shows a G-band (G for graphite) for the native nanotubes at 1580 cm−1 and a D-band (D for defect) at 1350  cm−1 when the graphite lattice is disrupted with conversion of sp² to sp³ hybridized carbon. The ratio of both peaks ID/IG is taken as a measure of functionalization. Other tools are UV spectroscopy where pristine nanotubes show distinct Van Hove singularities where functionalized tubes do not, and simple TGA analysis.

In one type of chemical modification, aniline is oxidized to a diazonium intermediate. After expulsion of nitrogen, it forms a covalent bond as an aryl radical:[55][56]

Also known are protocols for cycloadditions such as Diels-Alder reactions, 1,3-dipolar cycloadditions of azomethine ylides and azide–alkyne cycloaddition reactions.[57] One example is a DA reaction assisted by chromium hexacarbonyl and high pressure.[58] The ID/IG ratio for reaction with Danishefsky’s diene is 2.6.

Nanotubes can also be alkylated with alkyl halides using lithium or sodium metal and liquid ammonia (Birch reduction conditions).[59][60] The initial nanotube salt can function as an polymerization initiator [61] and can react with peroxides to form alkoxy functionalized nanotubes [62]

Fullerene purification

Fullerene purification is the process of obtaining a fullerene compound free of contamination. In fullerene production mixtures of C60, C70 and higher homologues are always formed. Fullerene purification is key to fullerene science and determines fullerene prices and the success of practical applications of fullerenes. The first available purification method for C60 fullerene was by HPLC from which small amounts could be generated at large expense.

A practical laboratory-scale method for purification of soot enriched in C60 and C70 starts with extraction in toluene followed by filtration with a paper filter. The solvent is evaporated and the residue (the toluene-soluble soot fraction) redissolved in toluene and subjected to column chromatography. C60 elutes first with a purple color and C70 is next displaying a reddish-brown color.[63]

In nanotube processing the established purification method for removing amorphous carbon and metals is by competitive oxidation (often a sulfuric acid / nitric acid mixture). It is assumed that this oxidation creates oxygen containing groups (hydroxyl, carbonyl, carboxyl) on the nanotube surface which electrostatically stabilize them in water and which can later be utilized in chemical functionalization. One report [64] reveals that the oxygen containing groups in actuality combine with carbon contaminations absorbed to the nanotube wall that can be removed by a simple base wash. Cleaned nanotubes are reported to have reduced D/G ratio indicative of less functionalization, and the absence of oxygen is also apparent from IR spectroscopy and X-ray photoelectron spectroscopy.

Experimental purification strategies

A recent kilogram-scale fullerene purification strategy was demonstrated by Nagata et al.[65] In this method C60 was separated from a mixture of C60, C70 and higher fullerene compounds by first adding the amidine compound DBU to a solution of the mixture in 1,2,3-trimethylbenzene. DBU as it turns out only reacts to C70 fullerenes and higher which reaction products separate out and can be removed by filtration. C60 fullerenes do not have any affinity for DBU and are subsequently isolated. Other diamine compounds like DABCO do not share this selectivity.

C60 but not C70 forms a 1:2 inclusion compound with cyclodextrin (CD). A separation method for both fullerenes based on this principle is made possible by anchoring cyclodextrin to colloidal gold particles through a sulfur-sulfur bridge.[66] The Au/CD compound is very stable and soluble in water and selectively extracts C60 from the insoluble mixture after refluxing for several days. The C70 fullerene component is then removed by simple filtration. C60 is driven out from the Au/CD compound by adding adamantol which has a higher affinity for the cyclodextrin cavity. Au/CD is completely recycled when adamantol in turn is driven out by adding ethanol and ethanol removed by evaporation; 50 mg of Au/CD captures 5 mg of C60 fullerene.


  1. 1.0 1.1 Hirsch, A.; Bellavia-Lund, C., ed. (1993). Fullerenes and Related Structures (Topics in Current Chemistry). Berlin: Springer. ISBN 3-540-64939-5.CS1 maint: multiple names: editors list (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  2. Diederich, F. N. (1997). "Covalent fullerene chemistry". Pure and Applied Chemistry. 69 (3): 395–400. doi:10.1351/pac199769030395.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  3. Prato, M. (1997). "[60]Fullerene chemistry for materials science applications" (PDF). Journal of Materials Chemistry. 7 (7): 1097–1109. doi:10.1039/a700080d.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  4. Beavers, C. M.; Zuo, T.; Duchamp, J. C.; Harich, K.; Dorn, H. C.; Olmstead, M. M.; Balch, A. L. (2006). "Tb3N@C84: An Improbable, Egg-Shaped Endohedral Fullerene that Violates the Isolated Pentagon Rule". Journal of the American Chemical Society. 128 (35): 11352–11353. doi:10.1021/ja063636k. PMID 16939248.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  5. "Capturing the Labile Fullerene[50] as C50Cl10". Science. 304 (5671): 699. 2004. doi:10.1126/science.1095567. PMID 15118154.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  6. Weng, Q. H.; He, Q.; Liu, T.; Huang, H. Y.; Chen, J. H.; Gao, Z. Y.; Xie, S. Y.; Lu, X.; Huang, R. B.; Zheng, L. S. (2010). "Simple Combustion Production and Characterization of Octahydro[60]fullerene with a Non-IPR C60 Cage". Journal of the American Chemical Society. 132 (43): 15093–15095. doi:10.1021/ja108316e. PMID 20931962.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  7. Prato, M.; Lucchini, V.; Maggini, M.; Stimpfl, E.; Scorrano, G.; Eiermann, M.; Suzuki, T.; Wudl, F. (1993). "Energetic preference in 5,6 and 6,6 ring junction adducts of C60: Fulleroids and methanofullerenes". Journal of the American Chemical Society. 115 (18): 8479. doi:10.1021/ja00071a080.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  8. Vogel, E. (1982). "Recent advances in the chemistry of bridged annulenes". Pure and Applied Chemistry. 54 (5): 1015–1039. doi:10.1351/pac198254051015.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  9. "Synthesis of 6,9,12,15,18-pentamethyl-1,6,9,12,15,18-hexahydro(c60-ih)[5,6]fullerene". Org. Synth. 83: 80. 2006.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  10. Iwashita, A.; Matsuo, Y.; Nakamura, E. (2007). "AlCl3-Mediated Mono-, Di-, and Trihydroarylation of [60]Fullerene". Angewandte Chemie International Edition. 46 (19): 3513–6. doi:10.1002/anie.200700062. PMID 17385815.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  11. Hoke, S. H.; Molstad, J.; Dilettato, D.; Jay, M. J.; Carlson, D.; Kahr, B.; Cooks, R. G. (1992). "Reaction of fullerenes and benzyne". The Journal of Organic Chemistry. 57 (19): 5069. doi:10.1021/jo00045a012.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  12. Darwish, A. D.; Avent, A. G.; Taylor, R.; Walton, D. R. M. (1996). "Reaction of benzyne with [70]fullerene gives four monoadducts: Formation of a triptycene homologue by 1,4-cycloaddition of a fullerene". Journal of the Chemical Society, Perkin Transactions 2 (10): 2079. doi:10.1039/P29960002079.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  13. Talyzin, A. V.; Tsybin, Y. O.; Purcell, J. M.; Schaub, T. M.; Shulga, Y. M.; Noréus, D.; Sato, T.; Dzwilewski, A.; Sundqvist, B.; Marshall, A. G. (2006). "Reaction of Hydrogen Gas with C60at Elevated Pressure and Temperature: Hydrogenation and Cage Fragmentation†". The Journal of Physical Chemistry A. 110 (27): 8528–8534. doi:10.1021/jp0557971. PMID 16821837.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  14. Chiang, L. Y.; Swirczewski, J. W.; Hsu, C. S.; Chowdhury, S. K.; Cameron, S.; Creegan, K. (1992). "Multi-hydroxy additions onto C60 fullerene molecules". Journal of the Chemical Society, Chemical Communications (24): 1791. doi:10.1039/C39920001791.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  15. Chiang, L. Y.; Upasani, R. B.; Swirczewski, J. W.; Soled, S. (1993). "Evidence of hemiketals incorporated in the structure of fullerols derived from aqueous acid chemistry". Journal of the American Chemical Society. 115 (13): 5453. doi:10.1021/ja00066a014.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  16. Li, J.; Takeuchi, A.; Ozawa, M.; Li, X.; Saigo, K.; Kitazawa, K. (1993). "C60 fullerol formation catalysed by quaternary ammonium hydroxides". Journal of the Chemical Society, Chemical Communications (23): 1784. doi:10.1039/C39930001784.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  17. Wang, S.; He, P.; Zhang, J. M.; Jiang, H.; Zhu, S. Z. (2005). "Novel and Efficient Synthesis of Water‐Soluble [60]Fullerenol by Solvent‐Free Reaction". Synthetic Communications. 35 (13): 1803. doi:10.1081/SCC-200063958.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  18. Zhang, G.; Liu, Y.; Liang, D.; Gan , L.; Li, Y. (2010). "Facile Synthesis of Isomerically Pure Fullerenols and Formation of Spherical Aggregates from C60(OH)8". Angewandte Chemie International Edition. 49 (31): 5293–5. doi:10.1002/anie.201001280. PMID 20575126.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  19. Kokubo, K.; Matsubayashi, K.; Tategaki, H.; Takada, H.; Oshima, T. (2008). "Facile Synthesis of Highly Water-Soluble Fullerenes More Than Half-Covered by Hydroxyl Groups". ACS Nano. 2 (2): 327–333. doi:10.1021/nn700151z. PMID 19206634.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  20. Jia, J.; Wu, H. S.; Xu, X. H.; Zhang, X. M.; Jiao, H. (2008). "Fused Five-Membered Rings Determine the Stability of C60F60". Journal of the American Chemical Society. 130 (12): 3985–3988. doi:10.1021/ja0781590. PMID 18311972.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  21. Carbene Additions to Fullerenes Michio Yamada, Takeshi Akasaka, and Shigeru Nagase Chemical Reviews Article ASAP doi:10.1021/cr3004955
  22. C61Cl2. Synthesis and characterization of dichlorocarbene adducts of C60 Minoru Tsuda, Takayuki Ishida, Takashi Nogami, Sadamu Kurono, Mamoru Ohashi Tetrahedron Letters Volume 34, Issue 43, 22 October 1993, Pages 6911–6912 doi:10.1016/S0040-4039(00)91828-8
  23. Radical Reactions of Fullerenes: From Synthetic Organic Chemistry to Materials Science and Biology Manolis D. Tzirakis and Michael Orfanopoulos Chemical Reviews Article ASAP doi:10.1021/cr300475r
  24. ESR studies of the reaction of alkyl radicals with fullerene (C60) J. R. Morton, K. F. Preston, P. J. Krusic, S. A. Hill, and E. Wasserman The Journal of Physical Chemistry 1992 96 (9), 3576-3578 doi:10.1021/j100188a006
  25. Cortés-Figueroa, J. E. (2003). "An Experiment for the Inorganic Chemistry Laboratory: The Sunlight-Induced Photosynthesis of (η2-C60)M(CO)5 Complexes (M = Mo, W)". Journal of Chemical Education. 80 (7): 799–346. Bibcode:2003JChEd..80..799C. doi:10.1021/ed080p799.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  26. Scott, L. T.; Boorum, M. M.; McMahon, B. J.; Hagen, S.; Mack, J.; Blank, J.; Wegner, H.; De Meijere, A. (2002). "A Rational Chemical Synthesis of C60". Science. 295 (5559): 1500–1503. Bibcode:2002Sci...295.1500S. doi:10.1126/science.1068427. PMID 11859187.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  27. The numbers in image correspond to the way the new carbon carbon bonds are formed.
  28. Amsharov, K. Y.; Jansen, M. (2008). "A C78 Fullerene Precursor: Toward the Direct Synthesis of Higher Fullerenes". The Journal of Organic Chemistry. 73 (7): 2931–2934. doi:10.1021/jo7027008. PMID 18321126.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  29. Kabdulov, M., Jansen, M. and Amsharov, K. Yu. (2013), Bottom-Up C60 Fullerene Construction from a Fluorinated C60H21F9 Precursor by Laser-Induced Tandem Cyclization. Chem. Eur. J., 19: 17262–17266. doi:10.1002/chem.201303838
  30. Yang, X.; Dou, X.; Rouhanipour, A.; Zhi, L.; Räder, H. J.; Müllen, K. (2008). "Two-Dimensional Graphene Nanoribbons". Journal of the American Chemical Society. 130 (13): 4216–4217. doi:10.1021/ja710234t. PMID 18324813.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  31. Dössel, L.; Gherghel, L.; Feng, X.; Müllen, K. (2011). "Graphene Nanoribbons by Chemists: Nanometer-Sized, Soluble, and Defect-Free". Angewandte Chemie International Edition. 50 (11): 2540. doi:10.1002/anie.201006593.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  32. Vougioukalakis, G. C.; Roubelakis, M. M.; Orfanopoulos, M. (2010). "Open-cage fullerenes: Towards the construction of nanosized molecular containers". Chemical Society Reviews. 39 (2): 817–844. doi:10.1039/b913766a. PMID 20111794.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  33. Roubelakis, M. M.; Vougioukalakis, G. C.; Orfanopoulos, M. (2007). "Open-Cage Fullerene Derivatives Having 11-, 12-, and 13-Membered-Ring Orifices: Chemical Transformations of the Organic Addends on the Rim of the Orifice". The Journal of Organic Chemistry. 72 (17): 6526–6533. doi:10.1021/jo070796l. PMID 17655360.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  34. Hummelen, J. C.; Prato, M.; Wudl, F. (1995). "There is a Hole in My Bucky". Journal of the American Chemical Society. 117 (26): 7003. doi:10.1021/ja00131a024.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  35. Vostrowsky, O.; Hirsch, A. (2006). "Heterofullerenes". Chemical Reviews. 106 (12): 5191–5207. doi:10.1021/cr050561e. PMID 17165685.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  36. Hummelen, Jan C.; Bellavia-Lund, Cheryl and Wudl, Fred (1999) "Heterofullerenes. Fullerenes and Related Structures" in Topics in Current Chemistry, Volume 199, pp. 93–134 doi:10.1007/3-540-68117-5_3
  37. Chai, Y.; Guo, T.; Jin, C.; Haufler, R. E.; Chibante, L. P. F.; Fure, J.; Wang, L.; Alford, J. M.; Smalley, R. E. (1991). "Fullerenes with metals inside". The Journal of Physical Chemistry. 95 (20): 7564. doi:10.1021/j100173a002.CS1 maint: multiple names: authors list (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  38. Muhr, H. -J.; Nesper, R.; Schnyder, B.; Kötz, R. (1996). "The boron heterofullerenes C59B and C69B: Generation, extraction, mass spectrometric and XPS characterization". Chemical Physics Letters. 249 (5–6): 399. Bibcode:1996CPL...249..399M. doi:10.1016/0009-2614(95)01451-9.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  39. Averdung, J.; Luftmann, H.; Schlachter, I.; Mattay, J. (1995). "Aza-dihydro[60]fullerene in the gas phase. A mass-spectrometric and quantumchemical study". Tetrahedron. 51 (25): 6977. doi:10.1016/0040-4020(95)00361-B.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  40. Lamparth, I.; Nuber, B.; Schick, G.; Skiebe, A.; Grösser, T.; Hirsch, A. (1995). "C59N+ and C69N+: Isoelectronic Heteroanalogues of C60 and C70". Angewandte Chemie International Edition in English. 34 (20): 2257. doi:10.1002/anie.199522571.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  41. Christian, J. F.; Wan, Z.; Anderson, S. L. (1992). "O++C60•C60O+ production and decomposition, charge transfer, and formation of C59O+. Dopeyball or [CO@C58]+". Chemical Physics Letters. 199 (3–4): 373. Bibcode:1992CPL...199..373C. doi:10.1016/0009-2614(92)80134-W.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  42. Ohtsuki, T.; Ohno, K.; Shiga, K.; Kawazoe, Y.; Maruyama, Y.; Masumoto, K. (1999). "Formation of As- and Ge-doped heterofullerenes". Physical Review B. 60 (3): 1531. Bibcode:1999PhRvB..60.1531O. doi:10.1103/PhysRevB.60.1531.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  43. Möschel, C. and Jansen, M. (1999). "Darstellung stabiler Phosphor-Heterofullerene im Hochfrequenzofen". Z. Anorg. Allg. Chem. 625 (2): 175–177. doi:10.1002/(SICI)1521-3749(199902)625:2<175::AID-ZAAC175>3.0.CO;2-2.CS1 maint: multiple names: authors list (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  44. "Photolysis experiments on SiC mixed clusters: From silicon carbide clusters to silicon-doped fullerenes". The Journal of Chemical Physics. 110 (14): 6927–6921. 1999. Bibcode:1999JChPh.110.6927P. doi:10.1063/1.478598.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  45. 45.0 45.1 45.2 "Experimental and computational studies of heterofullerenes". Nanostructured Materials. 12 (5–8): 1071–1076. 1999. doi:10.1016/S0965-9773(99)00301-3.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  46. Branz, W.; Billas, I. M. L.; Malinowski, N.; Tast, F.; Heinebrodt, M.; Martin, T. P. (1998). "Cage substitution in metal–fullerene clusters". The Journal of Chemical Physics. 109 (9): 3425. Bibcode:1998JChPh.109.3425B. doi:10.1063/1.477410.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  47. Hummelen, J. C.; Knight, B.; Pavlovich, J.; Gonzalez, R.; Wudl, F. (1995). "Isolation of the Heterofullerene C59N as Its Dimer (C59N)2". Science. 269 (5230): 1554–1556. Bibcode:1995Sci...269.1554H. doi:10.1126/science.269.5230.1554. PMID 17789446.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  48. Keshavarz-K, M.; González, R.; Hicks, R. G.; Srdanov, G.; Srdanov, V. I.; Collins, T. G.; Hummelen, J. C.; Bellavia-Lund, C.; Pavlovich, J.; Wudl, F.; Holczer, K. (1996). "Synthesis of hydroazafullerene C59HN, the parent hydroheterofullerene". Nature. 383 (6596): 147. Bibcode:1996Natur.383..147K. doi:10.1038/383147a0.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  49. Nuber, B.; Hirsch, A. (1996). "A new route to nitrogen heterofullerenes and the first synthesis of (C69N)2". Chemical Communications (12): 1421. doi:10.1039/CC9960001421.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  50. Zhang, G.; Huang, S.; Xiao, Z.; Chen, Q.; Gan, L.; Wang, Z. (2008). "Preparation of Azafullerene Derivatives from Fullerene-Mixed Peroxides and Single Crystal X-ray Structures of Azafulleroid and Azafullerene". Journal of the American Chemical Society. 130 (38): 12614–12615. doi:10.1021/ja805072h. PMID 18759401.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  51. Xin, N.; Huang, H.; Zhang, J.; Dai, Z.; Gan, L. (2012). "Fullerene Doping: Preparation of Azafullerene C59NH and Oxafulleroids C59O3 and C60O4". Angewandte Chemie International Edition. 51 (25): 6163–6166. doi:10.1002/anie.201202777. PMID 22573566.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  52. Komatsu, K.; Wang, G. W.; Murata, Y.; Tanaka, T.; Fujiwara, K.; Yamamoto, K.; Saunders, M. (1998). "Mechanochemical Synthesis and Characterization of the Fullerene Dimer C120". The Journal of Organic Chemistry. 63 (25): 9358. doi:10.1021/jo981319t.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  53. Komatsu, K.; Fujiwara, K.; Murata, Y. (2000). "The Mechanochemical Synthesis and Properties of the Fullerene Trimer C180". Chemistry Letters (9): 1016. doi:10.1246/cl.2000.1016.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  54. Kunitake M, Uemura S, Ito O, Fujiwara K, Murata Y and Komatsu K (2002). "Structural Analysis of C60 Trimers by Direct Observation with Scanning Tunneling Microscopy". Angewandte Chemie International Edition. 41 (6): 969–972. doi:10.1002/1521-3773(20020315)41:6<969::AID-ANIE969>3.0.CO;2-I.CS1 maint: multiple names: authors list (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  55. Price, B. K.; Tour, J. M. (2006). "Functionalization of Single-Walled Carbon Nanotubes "On Water"". Journal of the American Chemical Society. 128 (39): 12899–12904. doi:10.1021/ja063609u. PMID 17002385.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  56. The oxidizing agent is isoamyl nitrite and because the optimized reaction takes place as a suspension in water it is a so-called on water reaction.
  57. Kumar, I.; Rana, S.; Cho, J. W. (2011). "Cycloaddition Reactions: A Controlled Approach for Carbon Nanotube Functionalization". Chemistry - A European Journal. 17 (40): 11092. doi:10.1002/chem.201101260.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  58. Ménard-Moyon, C. C.; Dumas, F. O.; Doris, E.; Mioskowski, C. (2006). "Functionalization of Single-Wall Carbon Nanotubes by Tandem High-Pressure/Cr(CO)6 Activation of Diels−Alder Cycloaddition". Journal of the American Chemical Society. 128 (46): 14764–14765. doi:10.1021/ja065698g. PMID 17105260.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  59. Liang, F.; Sadana, A. K.; Peera, A.; Chattopadhyay, J.; Gu, Z.; Hauge, R. H.; Billups, W. E. (2004). "A Convenient Route to Functionalized Carbon Nanotubes". Nano Letters. 4 (7): 1257. Bibcode:2004NanoL...4.1257L. doi:10.1021/nl049428c.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  60. Wunderlich, D.; Hauke, F.; Hirsch, A. (2008). "Preferred functionalization of metallic and small-diameter single walled carbon nanotubes via reductive alkylation". Journal of Materials Chemistry. 18 (13): 1493. doi:10.1039/b716732f.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  61. Liang, F.; Beach, J. M.; Kobashi, K.; Sadana, A. K.; Vega-Cantu, Y. I.; Tour, J. M.; Billups, W. E. (2006). "In Situ Polymerization Initiated by Single-Walled Carbon Nanotube Salts". Chemistry of Materials. 18 (20): 4764. doi:10.1021/cm0607536.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  62. Mukherjee, A.; Combs, R.; Chattopadhyay, J.; Abmayr, D. W.; Engel, P. S.; Billups, W. E. (2008). "Attachment of Nitrogen and Oxygen Centered Radicals to Single-Walled Carbon Nanotube Salts". Chemistry of Materials. 20 (23): 7339. doi:10.1021/cm8014226.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  63. Spencer, T.; Yoo, B.; Kirshenbaum, K. (2006). "Purification and Modification of Fullerene C60 in the Undergraduate Laboratory". Journal of Chemical Education. 83 (8): 1218. Bibcode:2006JChEd..83.1218S. doi:10.1021/ed083p1218.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  64. Verdejo, R.; Lamoriniere, S.; Cottam, B.; Bismarck, A.; Shaffer, M. (2007). "Removal of oxidation debris from multi-walled carbon nanotubes". Chemical Communications (5): 513–5. doi:10.1039/b611930a. PMID 17252112.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  65. Nagata, K.; Dejima, E.; Kikuchi, Y.; Hashiguchi, M. (2005). "Kilogram-scale [60]Fullerene Separation from a Fullerene Mixture: Selective Complexation of Fullerenes with 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU)". Chemistry Letters. 34 (2): 178. doi:10.1246/cl.2005.178.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  66. Liu, Y.; Yang, Y. W.; Chen, Y. (2005). "Thio[2-(benzoylamino)ethylamino]-β-CD fragment modified gold nanoparticles as recycling extractors for [60]fullerene" (PDF). Chemical Communications (33): 4208–10. doi:10.1039/b507650a. PMID 16100605.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>