Functional electrical stimulation

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Functional electrical stimulation (FES) is a technique that uses electrical currents to activate nerves innervating extremities affected by paralysis resulting from spinal cord injury (SCI), head injury, stroke and other neurological disorders. FES is primarily used to restore function in people with disabilities. It is sometimes referred to as neuromuscular electrical stimulation (NMES).[1]

Principles

Lua error in package.lua at line 80: module 'strict' not found. Neurons are electrically active cells. The presence of an electric field in nervous tissue may lead to the depolarization of neural cell membranes and thereby induce firing of action potentials[citation needed]. FES devices take advantage of this property to electrically activate nerve cells, which then may go on to activate muscles or other nerves. However, special care must be taken in designing safe FES devices, as passing electric current through nervous tissue can lead to adverse effects such as decrease in excitability or cell death[citation needed]. This may be due to thermal damage[citation needed], electroporation of the cell membrane[citation needed], toxic products from electrochemical reactions at the electrode surface[citation needed], or overexcitation of the target neurons[citation needed]. Typical stimulation protocols used in clinical FES involves trains of electric pulses. Biphasic, charged balanced pulses are employed as they improve the safety of electrical stimulation[citation needed] and minimize some of the adverse effects. Pulse width, charge per phase and frequency are the key parameters that define safety and effectiveness of FES[citation needed]. Furthermore, the polarity of a biphasic pulse, which can be either cathodic-first or anodic-first, affects the threshold for activation for nervous tissue[citation needed]. For peripheral nervous stimulation, cathodic-first pulses have lower thresholds, resulting in more efficient for charge delivery. For surface cortical simulation, where axons are perpendicular to the electrode surface, anodic first pulses are more efficient.[2]

History

FES was initially referred to as Functional Electrotherapy by Liberson,[3] and it was not until 1967 that the term Functional Electrical Stimulation was coined by Moe and Post,[4] and used in a patent entitled, "Electrical stimulation of muscle deprived of nervous control with a view of providing muscular contraction and producing a functionally useful moment".[5] Offner's patent described a system used to treat foot drop.

The first commercially available FES devices treated foot drop by stimulating the peroneal nerve during gait. In this case, a switch, located in the heel end of a user's shoe, would activate a stimulator worn by the user.

Common applications

Spinal cord Injury

Injuries to the spinal cord interfere with electrical signals between the brain and the muscles, resulting in paralysis below the level of injury. Restoration of limb function as well as regulation of organ function are the main application of FES, although FES is also used for treatment of pain, pressure, sore prevention, etc.

Some examples of FES applications involve the use of Neuroprostheses that allow the people with paraplegia to walk, stand, restore hand grasp function in people with quadriplegia, or restore bowel and bladder function.[6]

High intensity FES of the quadriceps muscles allows patients with complete lower motor neuron lesion to increase their muscle mass, muscle fiber diameter, improve ultrastructural organization of contractile material, increase of force output during electrical stimulation and perform FES assisted stand-up exercises.[7]

Stroke

FES is commonly used in foot drop neuroprosthetic devices.

In the acute stage of stroke recovery, the use of cyclic electrical stimulation has been seen to increase the isometric strength of wrist extensors. In order to increase strength of wrist extensors, there must be a degree of motor function at the wrist spared following the stroke and have significant hemiplegia. Patients who will elicit benefits of cyclic electrical stimulation of the wrist extensors must be highly motivated to follow through with treatment, After 8 weeks of electrical stimulation, an increase in grip strength can be apparent. Many scales, which assess the level of disability of the upper extremities following a stroke, use grip strength as a common item. Therefore, increasing strength of wrist extensors will decrease the level of upper extremity disability.

Patients with hemiplegia following a stroke commonly experience shoulder pain and subluxation; both of which will interfere with the rehabilitation process. Functional electrical stimulation has been found to be effective for the management of pain and reduction of shoulder subluxation, as well as accelerating the degree and rate of motor recovery. Furthermore, the benefits of FES are maintained over time; research has demonstrated that the benefits are maintained for at least 24 months.[8]

See also

References

Lua error in package.lua at line 80: module 'strict' not found.

  1. M. Claudia et al.,(2000), Artificial Grasping System for the Paralyzed Hand, International Society for Artificial Organs, Vol 24 No.3
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. J. H. Moe and H. W. Post, “Functional electrical stimulation for ambulation in hemiplegia,” The Lancet, vol. 82, pp. 285–288, July 1962.
  5. Offner et al. (1965), Patent 3,344,792
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.


Further reading

  • Cooper E.B., Scherder E.J.A., Cooper J.B (2005) "Electrical treatment of reduced consciousness: experience with coma and Alzheimer's disease," Neuropsyh Rehab (UK).Vol. 15,389-405.
  • Cooper E.B,& Cooper J.B. (2003) "Electrical treatment of coma via the median nerve," Acta Neurochirurg Supp, Vol. 87, 7-10.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lichy A., Libin A., Ljunberg I., Groach L., (2007) " Preserving bone health after acute spinal cord injury: Differential responses to a neuromuscular electrical stimulation intervention", Proc. 12th Annual Conf. of the International FES Soc., Philadelphia, PA, Session 2, Paper 205.
  • Liu, Yi-Liang, Qi-Dan Ling, En-Tang Kang, Koon-Gee Neoh, Der-Jang Liaw, Kun-Li Wang, Wun-Tai Liou, Chun-Xiang Zhu, and Daniel Siu-Hung Chan. "Volatile Electrical Switching in a Functional Polyimide Containing Electron-donor and -acceptor Moieties." Journal of Applied Physics 105 (2009): 1-9. Print.
  • Nolte, John, and John Sundsten. The Human Brain: an Introduction to Its Functional Anatomy. 5th ed. St. Louis: Mosby, 2002. Print.
  • Rosenzweig, Mark R., Arnold L. Leiman, and S. Marc. Breedlove. Biological Psychology. Sunderland: Sinauer Associates, 2003. Print.
  • Wilkenfeld, Ari J., Musa L. Audu, and Ronald J. Triolo. "Feasibility of Functional Electrical Stimulation for Control of Seated Posture after Spinal Cord Injury: A Simulation Study." The Journal of Rehabilitation Research and Development 43.2 (2006): 139-43. Print.
  • Yuan, Wang, Zhang Ming, Netra Rana, Liu Hai, Jin Chen-wang, and Ma Shao-hui. "A Functional Magnetic Resonance Imaging Study of Human Brain in Pain-related Areas Induced by Electrical Stimulation with Different Intensities." Neurology India58.6 (2010): 922-27. Print.

External links