Kinkora (crater)

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Kinkora Crater
Mare Tyrrhenum map.JPG
Map of Mare Tyrrhenum quadrangle. Tyrrnena Patera is a major volcano.
Planet Mars
Coordinates Lua error in package.lua at line 80: module 'strict' not found.
Diameter 54.3 km

Kinkora Crater is a crater in the Mare Tyrrhenum quadrangle of Mars, located at 25.2° south latitude and 247.2° west longitude. It is 54.3 km in diameter and was named by the International Astronomical Union's Working Group for Planetary System Nomenclature (IAU/WGPSN) in 1991, after the town of Kinkora, Prince Edward Island, Canada.

Craters

The density of impact craters is used to determine the surface ages of Mars and other solar system bodies.[1] The older the surface, the more craters present. Crater shapes can reveal the presence of ground ice.

The area around craters may be rich in minerals. On Mars, heat from the impact melts ice in the ground. Water from the melting ice dissolves minerals, and then deposits them in cracks or faults that were produced with the impact. This process, called hydrothermal alteration, is a major way in which ore deposits are produced. The area around Martian craters may be rich in useful ores for the future colonization of Mars.[2] Studies on the earth have documented that cracks are produced and that secondary minerals veins are deposited in the cracks.[3][4][5] Images from satellites orbiting Mars have detected cracks near impact craters.[6] Great amounts of heat are produced during impacts. The area around a large impact may take hundreds of thousands of years to cool.[7][8][9] Many craters once contained lakes.[10][11][12] Because some crater floors show deltas, we know that water had to be present for some time. Dozens of deltas have been spotted on Mars.[13] Deltas form when sediment is washed in from a stream entering a quiet body of water. It takes a bit of time to form a delta; it means water was there for a time, maybe for many years. Primitive organisms may have developed in such lakes; hence, some craters may be prime targets for the search for evidence of life on the Red Planet.[14]

See also

<templatestyles src="Div col/styles.css"/>

References

  1. http://www.lpi.usra.edu/publications/slidesets/stones/
  2. http://www.indiana.edu/~sierra/papers/2003/Patterson.html.
  3. Osinski, G, J. Spray, and P. Lee. 2001. Impact-induced hydrothermal activity within the Haughton impact structure, arctic Canada: Generation of a transient, warm, wet oasis. Meteoritics & Planetary Science: 36. 731-745
  4. http://www.ingentaconnect.com/content/arizona/maps/2005/00000040/00000012/art00007
  5. Pirajno, F. 2000. Ore Deposits and Mantle Plumes. Kluwer Academic Publishers. Dordrecht, The Netherlands
  6. Head, J. and J. Mustard. 2006. Breccia Dikes and Crater-Related Faults in Impact Craters on Mars: Erosion and Exposure on the Floor of a 75-km Diameter Crater at the Dichotomy Boundary. Special Issue on Role of Volatiles and Atmospheres on Martian Impact Craters Meteoritics & Planetary Science
  7. name="news.discovery.com"
  8. Segura, T, O. Toon, A. Colaprete, K. Zahnle. 2001. Effects of Large Impacts on Mars: Implications for River Formation. American Astronomical Society, DPS meeting#33, #19.08
  9. Segura, T, O. Toon, A. Colaprete, K. Zahnle. 2002. Environmental Effects of Large Impacts on Mars. Science: 298, 1977-1980.
  10. Cabrol, N. and E. Grin. 2001. The Evolution of Lacustrine Environments on Mars: Is Mars Only Hydrologically Dormant? Icarus: 149, 291-328.
  11. Fassett, C. and J. Head. 2008. Open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology. Icarus: 198, 37-56.
  12. Fassett, C. and J. Head. 2008. Open-basin lakes on Mars: Implications of valley network lakes for the nature of Noachian hydrology.
  13. Wilson, J. A. Grant and A. Howard. 2013. INVENTORY OF EQUATORIAL ALLUVIAL FANS AND DELTAS ON MARS. 44th Lunar and Planetary Science Conference.
  14. Newsom H. , Hagerty J., Thorsos I. 2001. Location and sampling of aqueous and hydrothermal deposits in martian impact craters. Astrobiology: 1, 71-88.

External links