Melatonin

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Lua error in package.lua at line 80: module 'strict' not found.

Melatonin
Melatonin.svg
Melatonin molecule ball.png
Systematic (IUPAC) name
N-[2-(5-methoxy-1H-indol-3-yl)ethyl]
acetamide
Clinical data
Pronunciation Listeni/ˌmɛləˈtnɪn/
AHFS/Drugs.com Consumer Drug Information
Legal status
  • AU: S4 (Prescription only)
  • UK: POM (Prescription only)
  • US: OTC
Routes of
administration
Oral, sublingual, transdermal
Pharmacokinetic data
Bioavailability 30–50%
Metabolism Hepatic via CYP1A2 mediated 6-hydroxylation
Biological half-life 35–50 minutes
Excretion Renal
Identifiers
CAS Number 73-31-4 YesY
ATC code N05CH01 (WHO)
PubChem CID: 896
IUPHAR/BPS 224
DrugBank DB01065
ChemSpider 872 YesY
UNII JL5DK93RCL YesY
KEGG D08170 YesY
ChEBI CHEBI:16796 YesY
ChEMBL CHEMBL45 YesY
Chemical data
Formula C13H16N2O2
Molecular mass 232.278 g/mol
  • COC1=CC2=C(NC=C2CCNC(C)=O)C=C1
  • InChI=1S/C13H16N2O2/c1-9(16)14-6-5-10-8-15-13-4-3-11(17-2)7-12(10)13/h3-4,7-8,15H,5-6H2,1-2H3,(H,14,16) YesY
  • Key:DRLFMBDRBRZALE-UHFFFAOYSA-N YesY
  (verify)

Melatonin, chemically N-acetyl-5-methoxy tryptamine,[1] is a substance found in animals, plants, fungi and bacteria. In animals it is a hormone that anticipates the daily onset of darkness;[2] however in other organisms it may have different functions. Likewise, the synthesis of melatonin in animals differs from that in other organisms.

In animals, melatonin is involved in the entrainment (synchronization) of the circadian rhythms of physiological functions including sleep timing, blood pressure regulation, seasonal reproduction and many others.[3] Many of melatonin's biological effects in animals are produced through activation of melatonin receptors,[4] while others are due to its role as a pervasive and powerful antioxidant,[5] with a particular role in the protection of nuclear and mitochondrial DNA.[6]

The hormone can be used as a sleep aid and in the treatment of some sleep disorders. It can be taken orally in liquid form as well as capsules or tablets in immediate- or prolonged-release form. It is also available in a form to be used sublingually, and as transdermal patches. Melatonin is sold over-the-counter in the U.S. and Canada. In other countries it may require a prescription or it may be unavailable.

Medical uses

A bottle of melatonin tablets. Additionally melatonin is available in timed release and in liquid forms.
Sublingual melatonin spray.

Melatonin has been studied for insomnia in the elderly.[7][8][9] Prolonged release melatonin has shown good results in treating insomnia in older adults (2007).[10] Short-term treatment (up to three months) of prolonged-release melatonin was found to be effective and safe in improving sleep latency, sleep quality and daytime alertness.[11]

Melatonin can be used to reset the circadian sleep clock.[12]

Sleep disorders

A 2004 review found that "there was no evidence that melatonin had an effect on sleep onset latency or sleep efficiency" in people suffering from sleep restriction, such as from shift work and rapid transmeridian travel, while it did decrease sleep onset latency in people with a primary sleep disorder and it increased sleep efficiency in people with a secondary sleep disorder.[13]

In exploratory studies, prolonged-release melatonin has shown sleep quality improvement in patients with schizophrenia[14] as well as in patients with major depressive disorder.[15][16] It has shown promise in treating sleep-wake cycle disorders in children with underlying neurodevelopment difficulties.[12][17] It may also reduce circadian misalignment and seasonal affective disorder (SAD).[18][19] Additionally, as add-on to antihypertensive therapy, prolonged-release melatonin improved blood pressure control in patients with nocturnal hypertension as shown in a randomised double-blind placebo controlled study.[20]

Basic animal research indicates that melatonin may play a role in modulating the effects of drugs of abuse such as cocaine.[21][22]

Standard treatment

Melatonin taken in the evening is the standard treatment for such circadian rhythm sleep disorders as delayed sleep phase disorder (DSPD) and non-24-hour sleep–wake disorder (Non-24) in both sighted and blind[23] people where circadian rhythms are not entrained (biologically synchronized) to the environmental cycle. Sighted people with these disorders generally also use light therapy upon awakening. Melatonin reduces sleep onset latency to a greater extent in people with DSPD than in people with insomnia.[13]

A very small dose taken several hours before bedtime in accordance with the phase response curve for melatonin in humans (PRC) does not cause sleepiness but, acting as a chronobiotic (affecting aspects of biological time structure),[24] advances the phase slightly and is additive to the effect of using light therapy upon awakening. Light therapy may advance the phase about one to two-and-a-half hours and an oral dose of 0.3 or 3 mg of melatonin, timed correctly some hours before bedtime, can add about 30 minutes to the ~2 hour advance achieved with light therapy. There is no difference in the average magnitude of phase shift induced by the two doses (0.3 or 3 mg).[25]

Jet lag and shift work

Melatonin is known to aid in reducing the effects of jet lag, especially in eastward travel, by promoting the necessary re-set of the body's sleep-wake phase. If the timing is not correct, however, it can instead delay adaption.[26]

Melatonin appears also to have some use against the sleep problems of people who work rotating or night shifts.[27]

Headaches

There is tentative evidence in some types of headaches including cluster headaches.[28]

Cancer

A 2013 review by the National Cancer Institute's found evidence for use to be inconclusive.[29] A 2005 review of unblinded clinical trials found a reduced rate of death but that blinded and independently conducted randomized controlled trials are needed.[30]

Gallbladder stones

Melatonin presence in the gallbladder has many protective properties, such as converting cholesterol to bile, preventing oxidative stress, and increasing the mobility of gallstones from the gallbladder.[31]

Protection from radiation

Both animal[32] and human[33][34] studies have shown melatonin to protect against radiation-induced cellular damage. The mechanism of melatonin in protection against oxidative stress from ionizing radiation by scavenging reactive oxygen species which are generated during exposure.[35] It is estimated that nearly 70% of biological damage caused by ionizing radiation is attributable to the free radical, especially the hydroxyl radical that attacks DNA, proteins, and cellular membranes. Melatonin has been described as a broadly protective, readily available, and orally self-administered antioxidant that is without major known side effects.[36]

Tinnitus

There is tentative evidence of benefit in tinnitus.[37]

Psychiatry

Melatonin might improve sleep in autistic people.[38] Research has shown that children with autism have abnormal melatonin pathways and below average physiological levels of melatonin.[39][40] Melatonin supplementation has been shown to improve sleep duration, sleep onset latency, and night-time awakenings.[39][41][42] However, many studies on melatonin and autism rely on self-reported levels of improvement and more rigorous research is needed.

While the packaging of melatonin often warns against use in people under 18 years of age, available studies suggest that melatonin is an efficacious and safe treatment for insomnia in people with ADHD. However larger and longer studies are needed to establish long-term safety and optimal dosing.[43]

Melatonin in comparison to placebo is effective for reducing preoperative anxiety in adults when given as premedication. It may be just as effective as standard treatment with midazolam in reducing preoperative anxiety. Melatonin may also reduce postoperative anxiety (measured 6 hours after surgery) when compared to placebo.[44]

Some supplemental melatonin users report an increase in vivid dreaming. Extremely high doses of melatonin increased REM sleep time and dream activity in people both with and without narcolepsy.[45]

Adverse effects

Melatonin appears to cause very few side-effects as tested in the short term, up to three months, at low doses. Two systematic reviews in 2005 and 2006 showed that there were no adverse effects of exogenous melatonin in several clinical trials and that comparative trials found that the adverse effects headaches, dizziness, nausea and drowsiness were reported about equally for both melatonin and placebo.[46][47] Prolonged-release melatonin is safe with long-term use of up to 12 months.[48]

Melatonin can cause nausea, next-day grogginess, and irritability.[49] In the elderly, it can cause reduced blood flow and hypothermia.[50] In auto-immune disorders, there is conflicting evidence whether melatonin supplementation may either ameliorate or exacerbate symptoms due to immunomodulation.[51][52]

Melatonin can lower FSH levels.[53] Effects of melatonin on human reproduction remain unclear,[54] although it was with some effect tried as a contraceptive in the 1990s.[55]

Anticoagulants and other substances are known to interact with melatonin.[56]

Functions

Circadian rhythm

In animals, the primary function is regulation of day-night cycles. Human infants' melatonin levels become regular in about the third month after birth, with the highest levels measured between midnight and 8:00 AM.[57] Human melatonin production decreases as a person ages.[58] Also, as children become teenagers, the nightly schedule of melatonin release is delayed, leading to later sleeping and waking times.[59]

Antioxidant

Besides its function as synchronizer of the biological clock, melatonin is a powerful free-radical scavenger and wide-spectrum antioxidant as discovered in 1993.[60][61][62] In many less complex life forms, this is its only known function.[35] Melatonin is an antioxidant that can easily cross cell membranes[63] and the blood–brain barrier.[5][64] This antioxidant is a direct scavenger of radical oxygen and nitrogen species including OH, O2, and NO.[61][65] Melatonin works with other antioxidants to improve the overall effectiveness of each antioxidant.[65] Melatonin has been proven to be twice as active as vitamin E, believed to be the most effective lipophilic antioxidant.[66] An important characteristic of melatonin that distinguishes it from other classic radical scavengers is that its metabolites are also scavengers in what is referred to as the cascade reaction.[35] Also different from other classic antioxidants, such as vitamin C and vitamin E, melatonin has amphiphilic properties. When compared to synthetic, mitochondrial-targeted antioxidants (MitoQ and MitoE), melatonin proved to be a better protector against mitochondrial oxidative stress.[67]

Immune system

While it is known that melatonin interacts with the immune system,[68][69] the details of those interactions are unclear. Antiinflammatory effect seems to be the most relevant and most documented in the literature.[70] There have been few trials designed to judge the effectiveness of melatonin in disease treatment. Most existing data are based on small, incomplete clinical trials. Any positive immunological effect is thought to be the result of melatonin acting on high-affinity receptors (MT1 and MT2) expressed in immunocompetent cells. In preclinical studies, melatonin may enhance cytokine production,[71] and by doing this counteract acquired immunodeficiences. Some studies also suggest that melatonin might be useful fighting infectious disease[72] including viral, such as HIV, and bacterial infections, and potentially in the treatment of cancer.

In rheumatoid arthritis patients, melatonin production has been found increased when compared to age-matched healthy controls.[73][relevant? ]

Metal chelation

In vitro, melatonin can form complexes with cadmium and other metals.[74]

Biosynthesis and pharmacology

Melatonin biosynthesis in humans and some other organisms involves four enzymatic steps from the essential dietary amino acid tryptophan, which follows a serotonin pathway. In other organisms through the shikimic acid pathway.[75][76]

In the first two steps, L-tryptophan is first converted to 5-hydroxy-L-tryptophan (5-HTP) by an enzyme, tryptophan 5-hydroxylase. 5-HTP is then decarboxylated (CO2 removal) by 5-hydroxytryptophan decarboxylase to produce serotonin. This point is the rate limiting stage such that further reaction is determined by light-dark conditions.

Only in darkness, the key enzyme, aralkylamine N-acetyltransferase (AANAT) is activated and converts serotonin to N-acetyl serotonin, which is ultimately converted to melatonin by the final enzyme, acetylserotonin O-methyltransferase.[77][78] It is the key regulator of melatonin synthesis from tryptophan, as its gene AANAT is directly influenced by photoperiod.

In bacteria, protists, fungi, and plants melatonin is synthesized indirectly with tryptophan as an intermediate product of the shikimic acid pathway. In these cells synthesis starts with d-erythrose-4-phosphate and phosphoenolpyruvate, and in photosynthetic cells with carbon dioxide. The rest of the reactions are similar, but with slight variations in the last two enzymes.[79][80]

Regulation

In vertebrates, melatonin secretion is regulated by norepinephrine. Norepinephrine elevates the intracellular cAMP concentration via beta-adrenergic receptors and activates the cAMP-dependent protein kinase A (PKA). PKA phosphorylates the penultimate enzyme, the arylalkylamine N-acetyltransferase (AANAT). On exposure to (day)light, noradrenergic stimulation stops and the protein is immediately destroyed by proteasomal proteolysis.[81] Production of melatonin is again started in the evening at the point called the dim-light melatonin onset (DLMO).

It is principally blue light, around 460 to 480 nm, that suppresses melatonin,[82] proportional to the light intensity and length of exposure. Until recent history, humans in temperate climates were exposed to few hours of (blue) daylight in the winter; their fires gave predominantly yellow light. The incandescent light bulb widely used in the twentieth century produced relatively little blue light.[83] Kayumov et al. showed that light containing only wavelengths greater than 530 nm does not suppress melatonin in bright-light conditions.[84] Wearing glasses that block blue light in the hours before bedtime may decrease melatonin loss. Use of blue-blocking goggles the last hours before bedtime has also been advised for people who need to adjust to an earlier bedtime, as melatonin promotes sleepiness.[85]

Pharmacology

When used several hours before sleep according to the phase response curve for melatonin in humans, small amounts (0.3 mg[25]) of melatonin shift the circadian clock earlier, thus promoting earlier sleep onset and morning awakening.[86] In humans, 90% of orally administered exogenous melatonin is cleared in a single passage through the liver, a small amount is excreted in urine, and a small amount is found in saliva.[13]

Animals

In vertebrates, melatonin is produced in darkness, thus usually at night, by the pineal gland, a small endocrine gland[87] located in the center of the brain but outside the blood–brain barrier. Light/dark information reaches the suprachiasmatic nuclei (SCN) from retinal photosensitive ganglion cells of the eyes[88][89] rather than the melatonin signal (as was once postulated). Known as "the hormone of darkness", the onset of melatonin at dusk promotes activity in nocturnal (night active) animals and sleep in diurnal ones including humans.

Many animals use the variation in duration of melatonin production each day as a seasonal clock.[90] In animals including humans[91] the profile of melatonin synthesis and secretion is affected by the variable duration of night in summer as compared to winter. The change in duration of secretion thus serves as a biological signal for the organization of daylength-dependent (photoperiodic) seasonal functions such as reproduction, behavior, coat growth and camouflage coloring in seasonal animals.[91] In seasonal breeders that do not have long gestation periods and that mate during longer daylight hours, the melatonin signal controls the seasonal variation in their sexual physiology, and similar physiological effects can be induced by exogenous melatonin in animals including mynah birds[92] and hamsters.[93] Melatonin can suppress libido by inhibiting secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the anterior pituitary gland, especially in mammals that have a breeding season when daylight hours are long. The reproduction of long-day breeders is repressed by melatonin and the reproduction of short-day breeders is stimulated by melatonin.

During the night, melatonin regulates leptin, lowering its levels.

Plants

Melatonin is found in many plants including feverfew (Tanacetum parthenium), St John's wort (Hypericum perforatum),[94] rice, corn, tomato, grape[95] and other edible fruits.[96] The physiological roles in plants include regulation of their response to photoperiod, defense against harsh environments, and the function of an antioxidant.[97] It also regulates plant growth by its ability to slow root formation, while promoting above-ground growth.[65]

Exogenous melatonin

Dietary supplement and neurohormone

Melatonin is categorized by the US Food and Drug Administration (FDA) as a dietary supplement, and is sold over-the-counter in both the US and Canada.[98] The FDA regulations applying to medications are not applicable to melatonin.[3] However, new FDA rules required that by June 2010 all production of dietary supplements must comply with "current good manufacturing practices" (cGMP) and be manufactured with "controls that result in a consistent product free of contamination, with accurate labeling."[99] The industry has also been required to report to the FDA "all serious dietary supplement related adverse events", and the FDA has (within the cGMP guidelines) begun enforcement of that requirement.[100]

As melatonin may cause harm in combination with certain medications or in the case of certain disorders, a doctor or pharmacist should be consulted before making a decision to take melatonin.[26]

In many countries, melatonin is recognized as a neurohormone and it cannot be sold over-the-counter.[101]

Food products

Melatonin has been reported in foods including cherries to about 0.17–13.46 ng/g,[102] bananas and grapes, rice and cereals, herbs, olive oil, wine[103] and beer. When birds ingest melatonin-rich plant feed, such as rice, the melatonin binds to melatonin receptors in their brains.[104] When humans consume foods rich in melatonin such as banana, pineapple and orange the blood levels of melatonin significantly increase.[105]

As reported in the New York Times in May 2011,[106] beverages and snacks containing melatonin are sold in grocery stores, convenience stores, and clubs. The FDA is considering whether these food products can continue to be sold with the label "dietary supplements". On 13 January 2010, they issued a warning letter to Innovative Beverage, creators of several beverages marketed as drinks," stating that melatonin is not approved as a food additive because it is not generally recognized as safe.[107]

History

Melatonin was first discovered in connection to the mechanism by which some amphibians and reptiles change the color of their skin.[108][109] As early as 1917, Carey Pratt McCord and Floyd P. Allen discovered that feeding extract of the pineal glands of cows lightened tadpole skin by contracting the dark epidermal melanophores.[110][111]

In 1958, dermatology professor Aaron B. Lerner and colleagues at Yale University, in the hope that a substance from the pineal might be useful in treating skin diseases, isolated the hormone from bovine pineal gland extracts and named it melatonin.[112] In the mid-70s Lynch et al. demonstrated[113] that the production of melatonin exhibits a circadian rhythm in human pineal glands.

The discovery that melatonin is an antioxidant was made in 1993.[114] The first patent for its use as a low-dose sleep aid was granted to Richard Wurtman at MIT in 1995.[115] Around the same time, the hormone got a lot of press as a possible treatment for many illnesses.[116] The New England Journal of Medicine editorialized in 2000: "With these recent careful and precise observations in blind persons, the true potential of melatonin is becoming evident, and the importance of the timing of treatment is becoming clear. "[117]

Availability

University of Helsinki pharmaceutical laboratory prepared melatonin available upon prescription.

Immediate-release melatonin is not tightly regulated in countries where it is available as an over-the-counter medication. It is available in doses from less than half a milligram to 5 mg or more. Immediate-release formulations cause blood levels of melatonin to reach their peak in about an hour. The hormone may be administered orally, as capsules, tablets or as liquid. It is also available for use sublingually, or as transdermal patches.

Formerly, melatonin was derived from animal pineal tissue, such as bovine. It is now synthetic and does not carry a risk of contamination or the means of transmitting infectious material.[3][118]

Prolonged release

Melatonin is available as a prolonged-release prescription drug. It releases melatonin gradually over 8–10 hours, intended to mimic the body's internal secretion profile.

In June 2007 the European Medicines Agency (EMA) approved UK-based Neurim Pharmaceuticals' prolonged-release melatonin medication Circadin for marketing throughout the EU.[119] The drug is a prolonged-release melatonin, 2 mg, for patients aged 55 and older, as monotherapy for the short-term treatment (up to 13 weeks) of primary insomnia characterized by poor quality of sleep.[120][121]

Other countries' agencies that subsequently approved the drug include:

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 3.2 Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. 5.0 5.1 Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. 12.0 12.1 Lua error in package.lua at line 80: module 'strict' not found.
  13. 13.0 13.1 13.2 Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. Lua error in package.lua at line 80: module 'strict' not found.
  17. Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.
  20. Lua error in package.lua at line 80: module 'strict' not found.
  21. Lua error in package.lua at line 80: module 'strict' not found.
  22. Lua error in package.lua at line 80: module 'strict' not found.
  23. Lua error in package.lua at line 80: module 'strict' not found.
  24. Lua error in package.lua at line 80: module 'strict' not found. The reference discusses several chronobiotic substances, but not melatonin.
  25. 25.0 25.1 Lua error in package.lua at line 80: module 'strict' not found.
  26. 26.0 26.1 Lua error in package.lua at line 80: module 'strict' not found.
  27. Lua error in package.lua at line 80: module 'strict' not found.
  28. Lua error in package.lua at line 80: module 'strict' not found.
  29. Lua error in package.lua at line 80: module 'strict' not found.
  30. Lua error in package.lua at line 80: module 'strict' not found.
  31. Lua error in package.lua at line 80: module 'strict' not found.
  32. Lua error in package.lua at line 80: module 'strict' not found.
  33. Lua error in package.lua at line 80: module 'strict' not found.
  34. Lua error in package.lua at line 80: module 'strict' not found.
  35. 35.0 35.1 35.2 Lua error in package.lua at line 80: module 'strict' not found.
  36. Lua error in package.lua at line 80: module 'strict' not found.
  37. Lua error in package.lua at line 80: module 'strict' not found.
  38. Lua error in package.lua at line 80: module 'strict' not found.
  39. 39.0 39.1 Lua error in package.lua at line 80: module 'strict' not found.
  40. Lua error in package.lua at line 80: module 'strict' not found.
  41. Lua error in package.lua at line 80: module 'strict' not found.
  42. Lua error in package.lua at line 80: module 'strict' not found.
  43. Lua error in package.lua at line 80: module 'strict' not found.
  44. Lua error in package.lua at line 80: module 'strict' not found.
  45. Lua error in package.lua at line 80: module 'strict' not found.
  46. Lua error in package.lua at line 80: module 'strict' not found.
  47. Lua error in package.lua at line 80: module 'strict' not found.
  48. Lua error in package.lua at line 80: module 'strict' not found.
  49. Lua error in package.lua at line 80: module 'strict' not found.
  50. Lua error in package.lua at line 80: module 'strict' not found.
  51. Lua error in package.lua at line 80: module 'strict' not found.
  52. Lua error in package.lua at line 80: module 'strict' not found.
  53. Lua error in package.lua at line 80: module 'strict' not found.
  54. Lua error in package.lua at line 80: module 'strict' not found.
  55. Lua error in package.lua at line 80: module 'strict' not found.
  56. Lua error in package.lua at line 80: module 'strict' not found.
  57. Lua error in package.lua at line 80: module 'strict' not found.
  58. Lua error in package.lua at line 80: module 'strict' not found.
  59. Lua error in package.lua at line 80: module 'strict' not found.
  60. Lua error in package.lua at line 80: module 'strict' not found.
  61. 61.0 61.1 Lua error in package.lua at line 80: module 'strict' not found.
  62. Espino J, Bejarano I, Paredes SD, González D, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (January 2010). "Melatonin Counteracts Altrations in Oxidative Metabolism and Cell Viability Induced by Intracellular Calcium Overload in Human Leucocytes: Changes with Age". Basic & Clinical Pharmacology & Toxicology 107: 590-597. doi:[10.1111/j.1742-7843.2010.00546.x]
  63. Lua error in package.lua at line 80: module 'strict' not found.
  64. Lua error in package.lua at line 80: module 'strict' not found.
  65. 65.0 65.1 65.2 Lua error in package.lua at line 80: module 'strict' not found.
  66. Lua error in package.lua at line 80: module 'strict' not found.
  67. Lua error in package.lua at line 80: module 'strict' not found.
  68. Lua error in package.lua at line 80: module 'strict' not found.
  69. Lua error in package.lua at line 80: module 'strict' not found.
  70. Lua error in package.lua at line 80: module 'strict' not found.
  71. Lua error in package.lua at line 80: module 'strict' not found.
  72. Lua error in package.lua at line 80: module 'strict' not found.
  73. Lua error in package.lua at line 80: module 'strict' not found.
  74. Lua error in package.lua at line 80: module 'strict' not found.
  75. Lua error in package.lua at line 80: module 'strict' not found.
  76. Lua error in package.lua at line 80: module 'strict' not found.
  77. Lua error in package.lua at line 80: module 'strict' not found.
  78. Lua error in package.lua at line 80: module 'strict' not found.
  79. Lua error in package.lua at line 80: module 'strict' not found.
  80. Lua error in package.lua at line 80: module 'strict' not found.
  81. Lua error in package.lua at line 80: module 'strict' not found.
  82. Lua error in package.lua at line 80: module 'strict' not found.
  83. Cornell University, Light source spectra
  84. Lua error in package.lua at line 80: module 'strict' not found.
  85. Lua error in package.lua at line 80: module 'strict' not found.
  86. Lua error in package.lua at line 80: module 'strict' not found.
  87. Lua error in package.lua at line 80: module 'strict' not found.
  88. Lua error in package.lua at line 80: module 'strict' not found.
  89. Lua error in package.lua at line 80: module 'strict' not found.
  90. Lua error in package.lua at line 80: module 'strict' not found.
  91. 91.0 91.1 Lua error in package.lua at line 80: module 'strict' not found.
  92. Lua error in package.lua at line 80: module 'strict' not found.
  93. Lua error in package.lua at line 80: module 'strict' not found.
  94. Lua error in package.lua at line 80: module 'strict' not found.
  95. Lua error in package.lua at line 80: module 'strict' not found.
  96. Lua error in package.lua at line 80: module 'strict' not found.
  97. Lua error in package.lua at line 80: module 'strict' not found.
  98. Lua error in package.lua at line 80: module 'strict' not found.
  99. Lua error in package.lua at line 80: module 'strict' not found.
  100. Lua error in package.lua at line 80: module 'strict' not found.
  101. Lua error in package.lua at line 80: module 'strict' not found.
  102. Lua error in package.lua at line 80: module 'strict' not found.
  103. Lua error in package.lua at line 80: module 'strict' not found.
  104. Lua error in package.lua at line 80: module 'strict' not found.
  105. Lua error in package.lua at line 80: module 'strict' not found.
  106. Lua error in package.lua at line 80: module 'strict' not found.
  107. Lua error in package.lua at line 80: module 'strict' not found.
  108. Lua error in package.lua at line 80: module 'strict' not found.
  109. Lua error in package.lua at line 80: module 'strict' not found.
  110. Lua error in package.lua at line 80: module 'strict' not found.
  111. Lua error in package.lua at line 80: module 'strict' not found.
  112. Lua error in package.lua at line 80: module 'strict' not found.
  113. Lua error in package.lua at line 80: module 'strict' not found.
  114. Lua error in package.lua at line 80: module 'strict' not found.
  115. US patent 5449683, Wurtman RJ, "Methods of inducing sleep using melatonin", issued 12 September 1995, assigned to Massachusetts Institute of Technology 
  116. Lua error in package.lua at line 80: module 'strict' not found.
  117. Lua error in package.lua at line 80: module 'strict' not found.
  118. Lua error in package.lua at line 80: module 'strict' not found.
  119. Lua error in package.lua at line 80: module 'strict' not found.
  120. Medical News Today Circadin (Prolonged-Release Melatonin) For Primary Insomnia Recommended For Approval In The EU (27 April 2007)
  121. Lua error in package.lua at line 80: module 'strict' not found.
  122. 122.0 122.1 122.2 Lua error in package.lua at line 80: module 'strict' not found.
  123. Lua error in package.lua at line 80: module 'strict' not found.
  124. 124.0 124.1 Lua error in package.lua at line 80: module 'strict' not found.
  125. Lua error in package.lua at line 80: module 'strict' not found.
  126. Lua error in package.lua at line 80: module 'strict' not found.
  127. Lua error in package.lua at line 80: module 'strict' not found.
  128. 128.0 128.1 Lua error in package.lua at line 80: module 'strict' not found.
  129. Lua error in package.lua at line 80: module 'strict' not found.
  130. Lua error in package.lua at line 80: module 'strict' not found.

Further reading

  • Lua error in package.lua at line 80: module 'strict' not found.

External links