From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Metacognition is "cognition about cognition", "thinking about thinking", or "knowing about knowing". It comes from the root word "meta", meaning beyond.[1] It can take many forms; it includes knowledge about when and how to use particular strategies for learning or for problem solving.[1] There are generally two components of metacognition: knowledge about cognition, and regulation of cognition.[2]

Metamemory, defined as knowing about memory and mnemonic strategies, is an especially important form of metacognition.[3] Differences in metacognitive processing across cultures have not been widely studied, but could provide better outcomes in cross-cultural learning between teachers and students.[4]

Some evolutionary psychologists hypothesize that metacognition is used as a survival tool, which would make metacognition the same across cultures.[4] Writings on metacognition can be traced back at least as far as Perì Psūchês; and the Parva Naturalia of the Greek philosopher Aristotle.[5]


This higher-level cognition was given the label metacognition by American developmental psychologist John Flavell (1979).

The term metacognition literally means cognition about cognition, or more informally, thinking about thinking. Flavell defined metacognition as knowledge about cognition and control of cognition. For example, I am engaging in metacognition if I notice that I am having more trouble learning A than B; [or] if it strikes me that I should double check C before accepting it as fact. J. H. Flavell (1976, p. 232). Andreas Demetriou, in his theory, one of the neo-Piagetian theories of cognitive development, used the term hypercognition to refer to self-monitoring, self-representation, and self-regulation processes, which are regarded as integral components of the human mind.[6] Moreover, with his colleagues, he showed that these processes participate in general intelligence, together with processing efficiency and reasoning, which have traditionally been considered to compose fluid intelligence.[7]

Metacognition also thinks about one's own thinking process such as study skills, memory capabilities, and the ability to monitor learning. This concept needs to be explicitly taught along with content instruction. Metacognitive knowledge is about our own cognitive processes and our understanding of how to regulate those processes to maximize learning.

Some types of metacognitive knowledge would include:

  • Person knowledge (declarative knowledge) which is understanding one's own capabilities,
  • Task knowledge (procedural knowledge) which is how one perceives the difficulty of a task which is the content, length, and the type of assignment,
  • Strategic knowledge (conditional knowledge) which is one's own capability for using strategies to learn information. Young children are not particularly good at this; it is not until upper elementary where students start to develop the understanding of strategies that will be effective.

Different fields define metacognition very differently. Metacognition variously refers to the study of memory-monitoring and self-regulation, meta-reasoning, consciousness/awareness and auto-consciousness/self-awareness. In practice these capacities are used to regulate one's own cognition, to maximize one's potential to think, learn and to the evaluation of proper ethical/moral rules.

In the domain of experimental psychology, an influential distinction in metacognition (proposed by T. O. Nelson & L. Narens) is between Monitoring—making judgments about the strength of one's memories—and Control—using those judgments to guide behavior (in particular, to guide study choices). Dunlosky, Serra, and Baker (2007) covered this distinction in a review of metamemory research that focused on how findings from this domain can be applied to other areas of applied research.

In the domain of cognitive neuroscience, metacognitive monitoring and control has been viewed as a function of the prefrontal cortex, which receives (monitors) sensory signals from other cortical regions and through feedback loops implements control (see chapters by Schwartz & Bacon and Shimamura, in Dunlosky & Bjork, 2008).[3]

Metacognition is studied in the domain of artificial intelligence and modelling.[8] Therefore, it is the domain of interest of emergent systemics.

It has been used, albeit off the original definition, to describe one's own knowledge that we will die. Writers in the 1990s involved with the grunge music scene often used the term to describe self-awareness of mortality.[citation needed]


Metacognition is classified into three components:[9]

  1. Metacognitive knowledge (also called metacognitive awareness) is what individuals know about themselves and others as cognitive processors.
  2. Metacognitive regulation is the regulation of cognition and learning experiences through a set of activities that help people control their learning.
  3. Metacognitive experiences are those experiences that have something to do with the current, on-going cognitive endeavor.

Metacognition refers to a level of thinking that involves active control over the process of thinking that is used in learning situations. Planning the way to approach a learning task, monitoring comprehension, and evaluating the progress towards the completion of a task: these are skills that are metacognitive in their nature.

Metacognition includes at least three different types of metacognitive awareness when considering metacognitive knowledge:[10]

  1. Declarative knowledge: refers to knowledge about oneself as a learner and about what factors can influence one's performance.[2] Declarative knowledge can also be referred to as "world knowledge".[11]
  2. Procedural knowledge: refers to knowledge about doing things. This type of knowledge is displayed as heuristics and strategies.[2] A high degree of procedural knowledge can allow individuals to perform tasks more automatically. This is achieved through a large variety of strategies that can be accessed more efficiently.[12]
  3. Conditional knowledge: refers to knowing when and why to use declarative and procedural knowledge.[13] It allows students to allocate their resources when using strategies. This in turn allows the strategies to become more effective.[14]

Similar to metacognitive knowledge, metacognitive regulation or "regulation of cognition" contains three skills that are essential.[2][15]

  1. Planning: refers to the appropriate selection of strategies and the correct allocation of resources that affect task performance.
  2. Monitoring: refers to one's awareness of comprehension and task performance
  3. Evaluating: refers to appraising the final product of a task and the efficiency at which the task was performed. This can include re-evaluating strategies that were used.

Similarly, maintaining motivation to see a task to completion is also a metacognitive skill. The ability to become aware of distracting stimuli – both internal and external – and sustain effort over time also involves metacognitive or executive functions. The theory that metacognition has a critical role to play in successful learning means it is important that it be demonstrated by both students and teachers.

Students who demonstrate a wide range of metacognitive skills perform better on exams and complete work more efficiently[citation needed]. They are self-regulated learners who utilize the "right tool for the job" and modify learning strategies and skills based on their awareness of effectiveness. Individuals with a high level of metacognitive knowledge and skill identify blocks to learning as early as possible and change "tools" or strategies to ensure goal attainment. Swanson (1990) found that metacognitive knowledge can compensate for IQ and lack of prior knowledge when comparing fifth and sixth grade students' problem solving. Students with a high-metacognition were reported to have used fewer strategies, but solved problems more effectively than low-metacognition students, regardless of IQ or prior knowledge.[16] In one study examining students who do text messaging during college lectures, it was suggested that students with higher metacognitive abilities were less likely than other students to have their learning impacted by using a mobile phone in class.[17]

Metacognologists are aware of their own strengths and weaknesses, the nature of the task at hand, and available "tools" or skills. A broader repertoire of "tools" also assists in goal attainment. When "tools" are general, generic, and context independent, they are more likely to be useful in different types of learning situations.

Another distinction in metacognition is executive management and strategic knowledge. Executive management processes involve planning, monitoring, evaluating and revising one's own thinking processes and products. Strategic knowledge involves knowing what (factual or declarative knowledge), knowing when and why (conditional or contextual knowledge) and knowing how (procedural or methodological knowledge). Both executive management and strategic knowledge metacognition are needed to self-regulate one's own thinking and learning.[18]

Finally, there is no distinction between domain-general and domain-specific metacognitive skills. This means that metacognitive skills are domain-general in nature and there are no specific skills for certain subject areas. The metacognitive skills that are used to review an essay are the same as those that are used to verify an answer to a math question.[19]

Metacognitive experience is responsible for creating an identity that matters to an individual. The creation of the identity with meta-cognitive experience is linked to the identity-based motivation (IBM) model. The identity-based motivation model implies that "identities matter because they provide a basis for meaning making and for action."[20] A person decides also if the identity matters in two ways with meta-cognitive experience. First, a current or possible identity is either "part of the self and so worth pursuing"[21] or the individual thinks that the identity is part of their self, yet it is conflicting with more important identities and the individual will decide if the identity is or is not worth pursuing. Second, it also helps an individual decide if an identity should be pursued or abandoned.

Usually, abandoning identity has been linked to meta-cognitive difficulty. Based on the identity-based motivation model there are naive theories describing difficulty as a way to continue to pursue an identity. The incremental theory of ability states that if "effort matters then difficulty is likely to be interpreted as meaning that more effort is needed."[22] Here is an example: a woman who loves to play clarinet has come upon a hard piece of music. She knows that how much effort she puts into learning this piece is beneficial. The piece had difficulty so she knew the effort was needed. The identity the woman wants to pursue is to be a good clarinet player; having a metacognitive experience difficulty pushed her to learn the difficult piece to continue to identify with her identity. The entity theory of ability represents the opposite. This theory states that if "effort does not matter then difficulty is likely to be interpreted as meaning that ability is lacking so effort should be suspended."[22] Based on the example of the woman playing the clarinet, if she did not want to identify herself as a good clarinet player, she would not have put in any effort to learn the difficult piece which is an example of using metacognitive experience difficulty to abandon an identity.[23]

Relation to sapience

Metacognologists believe that the ability to consciously think about thinking is unique to sapient species and indeed is one of the definitions of sapience.[citation needed] There is evidence that rhesus monkeys, apes, and dolphins can make accurate judgments about the strengths of their memories of fact and monitor their own uncertainty,[24] while attempts to demonstrate metacognition in birds have been inconclusive.[25] A 2007 study has provided some evidence for metacognition in rats,[26][27][28] but further analysis suggested that they may have been following simple operant conditioning principles,[29] or a behavioral economic model.[30]

Metacognitive strategies

Metacognitive-like processes are especially ubiquitous when it comes to the discussion of self-regulated learning. Being engaged in metacognition is a salient feature of good self-regulated learners.[citation needed] Reinforcing collective discussion of metacognition is a salient feature of self-critical and self-regulating social groups.[citation needed] The activities of strategy selection and application include those concerned with an ongoing attempt to plan, check, monitor, select, revise, evaluate, etc.

Metacognition is 'stable' in that learners' initial decisions derive from the pertinent facts about their cognition through years of learning experience. Simultaneously, it is also 'situated' in the sense that it depends on learners' familiarity with the task, motivation, emotion, and so forth. Individuals need to regulate their thoughts about the strategy they are using and adjust it based on the situation to which the strategy is being applied. At a professional level, this has led to emphasis on the development of reflective practice, particularly in the education and health-care professions.

Recently, the notion has been applied to the study of second language learners in the field of TESOL and applied linguistics in general (e.g., Wenden, 1987; Zhang, 2001, 2010). This new development has been much related to Flavell (1979), where the notion of metacognition is elaborated within a tripartite theoretical framework. Learner metacognition is defined and investigated by examining their person knowledge, task knowledge and strategy knowledge.

Wenden (1991) has proposed and used this framework and Zhang (2001) has adopted this approach and investigated second language learners' metacognition or metacognitive knowledge. In addition to exploring the relationships between learner metacognition and performance, researchers are also interested in the effects of metacognitively-oriented strategic instruction on reading comprehension (e.g., Garner, 1994, in first language contexts, and Chamot, 2005; Zhang, 2010). The efforts are aimed at developing learner autonomy, interdependence and self-regulation.

Metacognition helps people to perform many cognitive tasks more effectively.[1] Strategies for promoting metacognition include self-questioning (e.g. "What do I already know about this topic? How have I solved problems like this before?"), thinking aloud while performing a task, and making graphic representations (e.g. concept maps, flow charts, semantic webs) of one's thoughts and knowledge. Carr, 2002, argues that the physical act of writing plays a large part in the development of metacognitive skills.[31]

Strategy Evaluation matrices (SEM) can help to improve the knowledge of cognition component of metacognition. The SEM works by identifying the declarative (Column 1), procedural (Column 2) and conditional (Column 3 and 4) knowledge about specific strategies. The SEM can help individuals identify the strength and weaknesses about certain strategies as well as introduce them to new strategies that they can add to their repertoire.[32]

A regulation checklist (RC) is a useful strategy for improving the regulation of cognition aspect of one's metacognition. RCs help individuals to implement a sequence of thoughts that allow them to go over their own metacognition.[32] King (1991) found that fifth-grade students who used a regulation checklist outperformed control students when looking at a variety of questions including written problem solving, asking strategic questions, and elaborating information.[33]

Metacognitive strategies training can consist of coaching the students in thinking skills that will allow them to monitor their own learning. Examples of strategies that can be taught to students are word analysis skills, active reading strategies, listening skills, organizational skills and creating mnemonic devices.[34]

Metastrategic knowledge

"Metastrategic knowledge" (MSK) is a sub-component of metacognition that is defined as general knowledge about higher order thinking strategies. MSK had been defined as "general knowledge about the cognitive procedures that are being manipulated". The knowledge involved in MSK consists of "making generalizations and drawing rules regarding a thinking strategy" and of "naming" the thinking strategy.[35]

The important conscious act of a metastrategic strategy is the "conscious" awareness that one is performing a form of higher order thinking. MSK is an awareness of the type of thinking strategies being used in specific instances and it consists of the following abilities: making generalizations and drawing rules regarding a thinking strategy, naming the thinking strategy, explaining when, why and how such a thinking strategy should be used, when it should not be used, what are the disadvantages of not using appropriate strategies, and what task characteristics call for the use of the strategy.[36]

MSK deals with the broader picture of the conceptual problem. It creates rules to describe and understand the physical world around the people who utilize these processes called higher-order thinking. This is the capability of the individual to take apart complex problems in order to understand the components in problem. These are the building blocks to understanding the "big picture" (of the main problem) through reflection and problem solving.[37]

Characteristics of Theory of Mind: Understanding the mind and the "mental world":

  1. False beliefs: understanding that a belief is only one of many and can be false.
  2. Appearance–reality distinctions: something may look one way but may be something else.
  3. Visual perspective taking: the views of physical objects differ based on perspective.
  4. Introspection: children's awareness and understanding of their own thoughts.

Metacognition and action

Both social and cognitive dimensions of sporting expertise can be adequately explained from a metacognitive perspective according to recent research. The potential of metacognitive inferences and domain-general skills including psychological skills training are integral to the genesis of expert performance. Moreover, the contribution of both mental imagery (e.g., mental practice) and attentional strategies (e.g., routines) to our understanding of expertise and metacognition is noteworthy.[38] The potential of metacognition to illuminate our understanding of action was first highlighted by Aidan Moran who discussed the role of meta-attention in 1996 [39] A recent research initiative, a research seminar series called META funded by the BPS, is exploring the role of the related constructs of meta-motivation, meta-emotion, and thinking and action (metacognition).

Mental illness and metacognition

Sparks of interest

In the context of mental health, metacognition can be loosely defined as the process that "reinforces one's subjective sense of being a self and allows for becoming aware that some of one's thoughts and feelings are symptoms of an illness.[40]" The interest in metacognition emerged from a concern for an individual's ability to understand their own mental status compared to others as well as the ability to cope with the source of their distress.[41] These insights into an individual's mental health status can have a profound effect on the over-all prognosis and recovery. Metacognition brings many unique insights into the normal daily functioning of a human being. It also demonstrates that a lack of these insights compromises 'normal' functioning. This leads to less healthy functioning. In the Autism spectrum, there is a profound inability to feel empathy towards the minds of other human beings.[42] In people who identify as alcoholics, there is a belief that the need to control cognitions is an independent predictor of alcohol use over anxiety. Alcohol may be used as a coping strategy for controlling unwanted thoughts and emotions formed by negative perceptions.[43] This is sometimes referred to as self medication.


Well's and Matthew's[44] theory proposes that when faced with an undesired choice, an individual can operate in two distinct modes: 'object' and 'Metacognitive.' Object mode interprets perceived stimuli as truth, where Metacognitive mode understands thoughts as cues that have to be weighted and evaluated. They are not as easily trusted. There are targeted interventions unique of each patient, that gives rise to the belief that assistance in increasing metacognition in people diagnosed with schizophrenia is possible through tailored psychotherapy. With a customized therapy in place clients then have the potential to develop greater ability to engage in complex self-reflection.[45] This can ultimately be pivotal in the patient's recovery process. In the Obsessive Compulsive Disorder spectrum, cognitive formulations have greater attention to intrusive thoughts related to the disorder. "Cognitive Self-Consciousness" are the tendencies to focus attention on thought. Patients with OCD exemplify varying degrees of these 'intrusive thoughts.' Patients also suffering from Generalized Anxiety Disorder also show negative thought process in their cognition.[46]

With any metacognition strategy, the main consensus is to believe that they are good. But in all actuality some may be very harmful. Cognitive-Attentional Syndrome (CAS) characterizes a Metacognitive model of emotion disorder. ((CAS is consistent with the constant with the attention strategy of excessively focusing on the source of a threat.)) This ultimately develops through the client's own beliefs. Metacognitive therapy attempts to correct this change in the CAS. One of the techniques in this model is called Attention Training (ATT).[47] It was designed to diminish the worry and anxiety by a sense of control and cognitive awareness. Also ATT trains clients to detect threats, test how controllable reality appears to be.[48]

Works of art as metacognitive artifacts

The concept of metacognition has also been applied to reader-response criticism. Narrative works of art, including novels, movies and musical compositions, can be characterized as metacognitive artifacts which are designed by the artist to anticipate and regulate the beliefs and cognitive processes of the recipient,[49] for instance, how and in which order events and their causes and identities are revealed to the reader of a detective story. As Menakhem Perry has pointed out, mere order has profound effects on the aesthetical meaning of a text.[50] Narrative works of art contain a representation of their own ideal reception process. They are something of a tool with which the creators of the work wish to attain certain aesthetical and even moral effects.[51]

Mind wandering and metacognition

There is an intimate, dynamic interplay between mind wandering and metacognition. Metacognition serves to correct the wandering mind, suppressing spontaneous thoughts and bringing attention back to more "worthwhile" tasks.[52][53]

Organizational metacognition

The concept of metacognition has also been applied to collective teams and organizations in general, termed organizational metacognition.

See also


  1. 1.0 1.1 1.2 Metcalfe, J., & Shimamura, A. P. (1994). Metacognition: knowing about knowing. Cambridge, MA: MIT Press.
  2. 2.0 2.1 2.2 2.3 Schraw, Gregory (1998). "Promoting general metacognitive awareness". Instructional Science. 26: 113–125. doi:10.1023/A:1003044231033.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  3. 3.0 3.1 Dunlosky, J. & Bjork, R. A. (Eds), Handbook of Metamemory and Memory. Psychology Press: New York.
  4. 4.0 4.1 Wright, Frederick. APERA Conference 2008. 14 Apr. 2009.>[dead link]
  5. Oxford Psychology Dictionary;metacognition
  6. Demetriou, A., Efklides, A., & Platsidou, M. (1993). The architecture and dynamics of developing mind: Experiential structuralism as a frame for unifying cognitive developmental theories. Monographs of the Society for Research in Child Development, 58, Serial Number 234.
  7. Demetriou, A.; Kazi, S. (2006). "Self-awareness in g (with processing efficiency and reasoning)". Intelligence. 34 (3): 297–317. doi:10.1016/j.intell.2005.10.002.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  8. doi:10.1016/j.artint.2005.10.009
  9. Flavell, J.H. (1979). "Metacognition and cognitive monitoring. A new area of cognitive-development inquiry". American Psychologist. 34 (10): 906–911. doi:10.1037/0003-066X.34.10.906.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  10. Jacobs, J.E.; Paris, S.G. (1987). "Children's metacognition about reading: Issues in definition, measurement, and instruction". Educational Psychologist. 22: 225–278.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  11. Schneider, W; Artelt, C. (2010). "Metacognition and mathematics education". ZDM Mathematics Education. 42 (2): 149–161. doi:10.1007/s11858-010-0240-2.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  12. Pressley, M; Borkowski, J.G.; Schneider, W. (1987). "Cognitive strategies: Good strategy users coordinate metacognition and knowledge". Annals of Child Development. 5.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  13. Garner, R (1990). "When children and adults do not use learning strategies: Toward a theory of settings". Review of Educational Research. 60 (4): 517–529. doi:10.3102/00346543060004517.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  14. Reynolds, R.E. (1992). "Selective attention and prose learning: Theoretical and empirical research". Educational Psychology Review. 4 (4): 345–391. doi:10.1007/BF01332144.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  15. Jacobs, J.E.; Paris, S.G. (1987). "Children's metacognition about reading: Issues in definition, measurement, and instruction". Educational Psychologist. 22: 255–278. doi:10.1080/00461520.1987.9653052.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  16. Swanson, H.L. (1990). "Influence of metacognitive knowledge and aptitude on problem solving". Journal of Educational Psychology. 82 (2): 306–314. doi:10.1037/0022-0663.82.2.306.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  17. Rosen, L. D., Lim, A. F., Carrier, L. M., & Cheever, N. A. (2011). An empirical examination of the educational impact of message-induced task switching in the classroom: Educational implications and strategies to enhance learning. Psicología Educativa, 17(2), 163-177.
  18. Hartman, 2001.
  19. Gourgey, A.F. (1998). "Metacognition in basic skills instruction". Instructional science. 26: 81–96. doi:10.1023/A:1003092414893.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  20. Oyserman & Destin 1011, 2010.
  21. Oyserman & Destin 1013, 2010.
  22. 22.0 22.1 Oyserman & Destin 1014, 2010.
  23. Oyserman, D.; Destin, M. (2010). "Identity-Based Motivation: Implications for Intervention". The Counseling Psychologist. 38 (7): 1001–1043. doi:10.1177/0011000010374775.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  24. Couchman, Justin J.; Coutinho, M. V. C.; Beran, M. J.; Smith, J. D. (2010). "Beyond Stimulus Cues and Reinforcement Signals: A New Approach to Animal Metacognition" (PDF). Journal of Comparative Psychology. 124 (4): , 356–368. doi:10.1037/a0020129. PMC 2991470. PMID 20836592.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  25. Metacognition: Known unknowns. Issue 2582 of New Scientist magazine, subscribers only.
  26. Rats Capable Of Reflecting On Mental Processes
  27. Foote, Allison L.; Crystal, Jonathon D. (March 2007). "Metacognition in the rat". Curr. Biol. 17 (6): 551–5. doi:10.1016/j.cub.2007.01.061. PMC 1861845. PMID 17346969.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  28. Foote, Allison L.; Crystal, J. D. (20 March 2007). "Metacognition in the Rat". Current Biology. 17 (6): 551–555. doi:10.1016/j.cub.2007.01.061. PMC 1861845. PMID 17346969.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  29. Smith, J. David; Beran, M. J.; Couchman, J. J.; Coutinho, M. V. C. (2008). "The Comparative Study of Metacognition: Sharper Paradigms, Safer Inferences" (PDF). Psychonomic Bulletin & Review. 15 (4): 679–691. doi:10.3758/PBR.15.4.679.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  30. Jozefowiez, J.; Staddon, J. E. R.; Cerutti, D. T. (2009). "Metacognition in animals: how do we know that they know?" (PDF). Comparative Cognition & Behavior Reviews. 4: 29–39. doi:10.3819/ccbr.2009.40003.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  31. Gammil, D. (2006). "Learning the Write Way". The Reading Teacher. 59 (8): 754–762. doi:10.1598/RT.59.8.3.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  32. 32.0 32.1 Schraw, Gregory (1998). "Promoting general metacogntive awareness". Instructional Science. 26: 113–125. doi:10.1023/A:1003044231033.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  33. King, A (1991). "Effects of training in strategic questioning on children's problem solving performance". Journal of Educational Psychology. 83 (3): 307–317. doi:10.1037/0022-0663.83.3.307.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  34. Thompson, L; Thompson, M. (1998). "Neurofeedback combined with training in metacognitive strategies: Effectiveness in students with ADD". Applied psychophysiology and biofeedback. 23 (4): 243–63. doi:10.1023/A:1022213731956. PMID 10457815.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  35. Zohar, A., & Ben David, A. (2009). Paving a clear path in a thick forest: A conceptual analysis of a metacognitive component. Metacognition And Learning, 4(3), 177-195. doi:10.1007/s11409-009-9044-6
  36. Veenman, M. V. J. (2006). Metacognition: Definitions, constituents, and their intricate relation with cognition. Symposium organized by Marcel V. J. Veenman, Anat Zohar, and Anastasia Efklides for the 2nd conference of the EARLI SIG on Metacognition (SIG 16), Cambridge, UK, 19–21 July.
  37. Beer, N., & Moneta, G. B. (2012). Coping and perceived stress as a function of positive metacognitions and positive meta-emotions. Individual Differences Research, 10(2), 105–116.
  38. MacIntyre, TE; Igou, ER; Campbell, MJ; Moran, AP; Matthews, J (2014). "Metacognition and action: a new pathway to understanding social and cognitive aspects of expertise in sport". Front. Psychol. 5: 1155. doi:10.3389/fpsyg.2014.01155.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  39. Moran A. P. (1996). The Psychology of Concentration in Sport Performers: A Cognitive Analysis. Hove, East Sussex: Psychology Press
  40. Lysaker, P. H., Dimaggio, G., Buck, K. D., Callaway, S. S., Salvatore, G., Carcione, A., & ... Stanghellini, G. (2011). Poor insight in schizophrenia: Links between different forms of metacognition with awareness of symptoms, treatment needed, and consequences of illness. Comprehensive Psychiatry, 52(3), 253-260.
  41. Semerari, A., Carcione, A., Dimaggio, G., Falcone, M., Nicol ` o, G., Procacci, M., & Alleva, G. (2003). How to evaluate Metacognitive function in psychotherapy? The Metacognition Assessment Scale and its applications. Clinical Psychology & Psychotherapy, 10, 238–261.
  42. Lysaker, P. H., Gumley, A., & Dimaggio, G. (2011). Metacognitive disturbances in people with severe mental illness: Theory, correlates with psychopathology and models of psychotherapy. Psychology And Psychotherapy: Theory, Research And Practice, 84(1), 1-8. doi:10.1111/j.2044-8341.2010.02007.x
  43. Spada, M. M., Zandvoort, M., & Wells, A. (2007). Metacognitions in problem drinkers. Cognitive Therapy And Research, 31(5), 709-716. doi:10.1007/s10608-006-9066-1
  44. Wells, A. & Mathews, G. (1997). Attention and Emotion. A clinical perspective. Hove, UK: Erlbaum.
  45. Lysaker, P. H.; Buck, K. D.; Carcione, A.; Procacci, M.; Salvatore, G.; Nicolò, G.; Dimaggio, G. (2011). "Addressing metacognitive capacity for self-reflection in the psychotherapy for schizophrenia: A conceptual model of the key tasks and processes". Psychology And Psychotherapy: Theory, Research And Practice. 84 (1): 58–69.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  46. Jacobi, D. M.; Calamari, J. E.; Woodard, J. L. (2006). "Obsessive-Compulsive Disorder Beliefs, Metacognitive Beliefs and Obsessional Symptoms: Relations between Parent Beliefs and Child Symptoms". Clinical Psychology & Psychotherapy. 13 (3): 153–162. doi:10.1002/cpp.485.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  47. Wells, A (1990). "Panic disorder in association with relaxation-induced anxiety: An attentional training approach to treatment". Behaviour Therapy. 21: 273–280. doi:10.1016/s0005-7894(05)80330-2.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  48. Wells, A.; Fisher, P.; Myers, S.; Wheatley, J.; Patel, T.; Brewin, C. R. (2009). "Metacognitive therapy in recurrent and persistent depression: A multiple-baseline study of a new treatment". Cognitive Therapy And Research. 33 (3): 291–300. doi:10.1007/s10608-007-9178-2.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  49. Lång, Markus (1998). "Teksti metakognitiivisena artefaktina: Sanataiteen ja säveltaiteen ontologiaa". Synteesi (in Finnish). 17 (4): 82–94. ISSN 0359-5242. Unknown parameter |trans_title= ignored (help)CS1 maint: unrecognized language (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
    Lång, Markus (2002). "Elokuva metakognitiivisena artefaktina: Reseptioesteettinen katsaus". Synteesi (in Finnish). 21 (1): 59–65. ISSN 0359-5242. Unknown parameter |trans_title= ignored (help)CS1 maint: unrecognized language (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  50. Perry, Menakhem (1979). "Literary Dynamics: How the Order of a Text Creates Its Meanings". Poetics Today. 1 (1–2): 35–64, 311–361. doi:10.2307/1772040. JSTOR 1772040.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  51. Lång 1998, p. 88.
  52. Kieran, C. R. Fox; Kalina Christoff (2014). "Metacognitive Facilitation of Spontaneous Thought Processes: When Metacognition Helps the Wandering Mind Find Its Way". The Cognitive Neuroscience of Metacognition: 293–319. doi:10.1007/978-3-642-45190-4_13.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  53. "Mind-wandering and metacognition: variation between internal and external thought predicts improved error awareness". Retrieved 9 May 2014.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>

Further reading

  • Annual Editions: Educational Psychology. Guilford: Dushkin Pub., 2002. Print.
  • Barell, J. (1992), "Like an incredibly hard algebra problem: Teaching for metacognition" In A. L. Costa, J. A. Bellanca, & R. Fogarty (eds.) If minds matter: A foreword to the future, Volume I (pp. 257–266). Palatine, IL: IRI/Skylight Publishing, Inc.
  • Beck, G. M. (1998) The Impact of a Prescriptive Curriculum on the Development of Higher Order Thinking Skills in Children, Unpublished MA dissertation, University of Leicester.
  • Brown, A. (1987). Metacognition, executive control, self-control, and other mysterious mechanisms. In F. Weinert and R. Kluwe (Eds.), Metacognition, Motivation, and Understanding (pp. 65–116). Hillsdale, NJ: Erlbaum.
  • Burke, K. (1999), "The Mindful School: How to Assess Authentic Learning" (3rd ed.), SkyLight Training and Publishing, USA. ISBN 1-57517-151-1
  • Carr, S.C. (2002). "Assessing learning processes: Useful information for teachers and students". Intervention in School and Clinic. 37 (3): 156–162. doi:10.1177/105345120203700304.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Chamot, A. (2005). The Cognitive Academic Language Learning Approach (CALLA): An update. In P. Richard-Amato and M. Snow (eds), Academic Success for English Language Learners (pp. 87–101). White Plains, NY: Longman.
  • Dunlosky, John & Metcalfe, Janet (2009). Metacognition. Los Angeles: SAGE. ISBN 978-1-4129-3972-0
  • Fisher, Peter & Wells, Adrian (2009). Metacognitive Therapy: Distinctive Features. London: Routledge. ISBN 978-0-415-43499-7
  • Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. B. Resnick (Ed.), The nature of intelligence (pp. 231–236). Hillsdale, NJ: Erlbaum
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, v34 n10 p906-11 Oct 1979.
  • Hartman, H. J. (2001). Metacognition in Learning and Instruction: Theory, Research and Practice. Dordrecht: Kluwer Academic Publishers
  • Niemi, H. (2002). Active learning—a cultural change needed in teacher education and schools. Teaching and Teacher Education, 18, 763-780.
  • Rasekh, Z., & Ranjbary, R. (2003). Metacognitive strategy training for vocabulary learning, TESL-EJ, 7(2), 1-18.
  • Shimamura, A. P. (2000). "Toward a cognitive neuroscience of metacognition". Consciousness and Cognition. 9 (2 Pt 1): 313–323. doi:10.1006/ccog.2000.0450. PMID 10924251.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • H. S. Terrace & J. Metcalfe (Eds.), The Missing Link in Cognition: Origins of Self-Reflective Consciousness. New York: Oxford University Press.
  • MacIntyre TE, Igou ER, Campbell MJ, Moran AP and Matthews J (2014) Metacognition and action: a new pathway to understanding social and cognitive aspects of expertise in sport. Front. Psychol. 5:1155 doi:10.3389/fpsyg.2014.01155 PMID PMC4199257
  • Metcalfe, J., & Shimamura, A. P. (1994). Metacognition: knowing about knowing. Cambridge, MA: MIT Press.
  • Papaleontiou-Louca, Eleonora (2008). Metacognition and Theory of Mind. Newcastle: Cambridge Scholars Publishing. ISBN 978-1-84718-578-5
  • Smith, J. D., Beran, M. J., Couchman, J. J., Coutinho, M. V. C., & Boomer, J. B. (2009). Animal metacognition: Problems and prospects, WWW, Comparative Cognition and Behavior Reviews, 4, 40–53.
  • Wenden, A. L. (1987). "Metacognition: An expanded view on the cognitive abilities of L2 learners". Language Learning. 37 (4): 573–594. doi:10.1111/j.1467-1770.1987.tb00585.x.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Wenden, A. (1991). Learner Strategies for Learner Autonomy. London: Prentice Hall.
  • Wells, A. (2009). Metacognitive therapy for Anxiety and Depression. New York: Guilford Press.
  • Wells, A. (2000). Emotional Disorders and Metacognition: Innovative Cognitive Therapy. Chichester, UK: Wiley.
  • Wells, A. & Mathews, G. (1994). Attention and Emotion: A Clinical Perspective. Hove, UK: Erlbaum.
  • Zhang, L. J. (2001). Awareness in reading: EFL students' metacognitive knowledge of reading strategies in an input-poor environment. Language Awareness, WWW, 11 (4), 268-288.
  • Zhang, L. J. (2010). A dynamic metacognitive systems account of Chinese university students' knowledge about EFL reading. TESOL Quarterly, WWW, 44 (2), 320-353.

External links