Semiclassical physics

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Semiclassical physics, or simply semiclassical refers to a theory in which one part of a system is described quantum-mechanically whereas the other is treated classically. For example, external fields will be constant, or when changing will be classically described. In general, it incorporates a development in powers of Planck's constant, resulting in the classical physics of power 0, and the first nontrivial approximation to the power of (−1). In this case, there is a clear link between the quantum-mechanical system and the associated semi-classical and classical approximations, as it is similar in appearance to the transition from physical optics to geometric optics.

Instances

Three examples of a semiclassical approximation include:

In quantum field theory, in the semiclassical approximation only Feynman diagrams with at most a single closed loop (see for example one-loop Feynman diagram) are considered, this corresponds to the powers of Planck's constant. In chaos theory, the observation semiclassical approximations is a topic of current research.

See also

References

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.ar:نصف تقليدي

de:Semiklassische Näherung et:Poolklassikalised kvantteooriad fr:Régime semi-classique ja:半古典論