Sensorimotor rhythm

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
SMR waves

The sensorimotor rhythm (SMR) is brain wave rhythm. It is an oscillatory idle rhythm of synchronized electromagnetic brain activity. It appears in spindles in recordings of EEG, MEG, and ECoG over the sensorimotor cortex. For most individuals, the frequency of the SMR is in the range of 13 to 15 Hz.[1]

Meaning

The meaning of SMR is not fully understood. Phenomenologically, a person is producing a stronger SMR amplitude when the corresponding sensorimotor areas are idle, e.g. during states of immobility. SMR typically decrease in amplitude when the corresponding sensory or motor areas are activated, e.g. during motor tasks and even during motor imagery.[2]

Conceptually, SMR is sometimes mixed up with alpha waves of occipital origin, the strongest source of neural signals in the EEG. One reason might be, that without appropriate spatial filtering the SMR is very difficult to detect as it is usually superimposed by the stronger occipital alpha waves. The feline SMR has been noted as being analogous to the human mu rhythm.[3]

Relevance in research

Neurofeedback

Neurofeedback training can be used to gain control over the SMR activity. Neurofeedback practitioners believe—and have produced experimental evidence to back up their claims[4]—that this feedback enables the subject to learn the regulation of their own SMR. People with learning difficulties,[5] ADHD,[6] epilepsy,[7] and autism[8] may benefit from an increase in SMR activity via neurofeedback. In the field of Brain-Computer Interfaces (BCI), the deliberate modification of the SMR amplitude during motor imagery can be used to control external applications.[9]

See also

Brain waves

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Ernst Niedermeyer, Fernando Lopes da Silva Electroencephalography. Basic principles, Clinical Applications and Related Fields. 3rd edition, Williams & Wilkins Baltimore 1993
  3. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6SYT-4PP03CV-N&_user=10&_coverDate=06/30/1979&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=195097667f4d5fea855e3f8e4c2b42c8&searchtype=a
  4. Tobias Egner and M. Barry Sterman, “Neurofeedback treatment of epilepsy: From basic rationale to practical application,” in press
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Andrea Kübler and Klaus-Robert Müller. An introduction to brain computer interfacing. In Guido Dornhege, Jose del R. Millán, Thilo Hinterberger, Dennis McFarland, and Klaus-Robert Müller, editors, Toward Brain-Computer Interfacing, pages 1-25. MIT press, Cambridge, MA, 2007

Further reading

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.