Star-free language

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

A regular language is said to be star-free if it can be described by a regular expression constructed from the letters of the alphabet, the empty set symbol, all boolean operators – including complementation – and concatenation but no Kleene star.[1] For instance, the language of words over the alphabet \{a,\,b\} that do not have consecutive a's can be defined by (\emptyset^c aa \emptyset^c)^c, where X^c denotes the complement of a subset X of \{a,\,b\}^*. The condition is equivalent to having generalized star height zero.

An example of a regular language which is not star-free is \{(aa)^n \mid n \geq 0\}.[2]

Marcel-Paul Schützenberger characterized star-free languages as those with aperiodic syntactic monoids.[3][4] They can also be characterized logically as languages definable in FO[<], the first-order logic over the natural numbers with the less-than relation,[5] as the counter-free languages[6] and as languages definable in linear temporal logic.[7]

All star-free languages are in uniform AC0.

See also

References

  1. Lawson (2004) p.235
  2. Arto Salomaa (1981). Jewels of Formal Language Theory. Computer Science Press. p. 53. ISBN 978-0-914894-69-8.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  3. Marcel-Paul Schützenberger (1965). "On finite monoids having only trivial subgroups" (PDF). Information and Computation. 8 (2): 190–194. doi:10.1016/s0019-9958(65)90108-7.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  4. Lawson (2004) p.262
  5. Straubing, Howard (1994). Finite automata, formal logic, and circuit complexity. Progress in Theoretical Computer Science. Basel: Birkhäuser. p. 79. ISBN 3-7643-3719-2. Zbl 0816.68086.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  6. McNaughton, Robert; Papert, Seymour (1971). Counter-free Automata. Research Monograph. 65. With an appendix by William Henneman. MIT Press. ISBN 0-262-13076-9. Zbl 0232.94024.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  7. Kamp, Johan Antony Willem (1968). Tense Logic and the Theory of Linear Order. University of California at Los Angeles (UCLA).<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>