Stratovolcano

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Mount Vesuvius near Naples, Italy, erupted in 79 CE. The last eruption of this stratovolcano occurred in March 1944.

A stratovolcano, also known as a composite volcano,[1] is a conical volcano built up by many layers (strata) of hardened lava, tephra, pumice, and volcanic ash. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile and periodic explosive eruptions and effusive eruptions, although some have collapsed craters called calderas. The lava flowing from stratovolcanoes typically cools and hardens before spreading far due to high viscosity. The magma forming this lava is often felsic, having high-to-intermediate levels of silica (as in rhyolite, dacite, or andesite), with lesser amounts of less-viscous mafic magma. Extensive felsic lava flows are uncommon, but have travelled as far as 15 km (9.3 mi).[2]

Stratovolcanoes are sometimes called "composite volcanoes" because of their composite layered structure built up from sequential outpourings of eruptive materials. They are among the most common types of volcanoes, in contrast to the less common shield volcanoes. Two famous stratovolcanoes are Krakatoa, best known for its catastrophic eruption in 1883 and Vesuvius, famous for its destruction of the towns Pompeii and Herculaneum in 79 CE. Both eruptions claimed thousands of lives. In modern times, Mount Saint Helens and Mount Pinatubo have erupted catastrophically.

Existence of stratovolcanoes has not been proved on other terrestrial bodies of the solar system[3] with one exception. Their existence was suggested for some isolated massifs on Mars, e.g., Zephyria Tholus.[4]

Creation

Cross section of subduction zone and an associated stratovolcano

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Stratovolcanoes are common at subduction zones, forming chains along plate tectonic boundaries where oceanic crust is drawn under continental crust (continental arc volcanism, e.g. Cascade Range, central Andes) or another oceanic plate (island arc volcanism, e.g. Japan, Aleutian Islands). The magma forming stratovolcanoes rises when water trapped both in hydrated minerals and in the porous basalt rock of the upper oceanic crust is released into mantle rock of the asthenosphere above the sinking oceanic slab. The release of water from hydrated minerals is termed "dewatering", and occurs at specific pressures and temperatures for each mineral, as the plate descends to greater depths. The water freed from the rock lowers the melting point of the overlying mantle rock, which then undergoes partial melting and rises due to its lighter density relative to the surrounding mantle rock, and pools temporarily at the base of the lithosphere. The magma then rises through the crust, incorporating silica-rich crustal rock, leading to a final intermediate composition. When the magma nears the top surface, it pools in a magma chamber under or within the volcano.

There, the relatively low pressure allows water and other volatiles (mainly CO2, SO2, Cl2, and H2O) dissolved in the magma to escape from solution, as occurs when a bottle of carbonated water is opened, releasing CO2. Once a critical volume of magma and gas accumulates, the obstacle (rock blockage) of the volcanic cone is overcome, leading to a sudden explosive eruption.[citation needed]

Hazards

Mount Etna on the Island of Sicily

In recorded history, explosive eruptions at subduction zone (convergent-boundary) volcanoes have posed the greatest hazard to civilizations.[5] Subduction-zone stratovolcanoes, such as Mount St. Helens, Mount Etna, and Mount Pinatubo, typically erupt with explosive force: the magma is too stiff to allow easy escape of volcanic gases. As a consequence, the tremendous internal pressures of the trapped volcanic gases remain in the pasty magma. Following the breaching of the magma chamber, the magma degasses explosively. The gases and water gush out with speed and force.[5]

Since 1600 CE, nearly 300,000 people have been killed by volcanic eruptions.[5] Most deaths were caused by pyroclastic flows and mudflows, deadly hazards that often accompany explosive eruptions of subduction-zone stratovolcanoes. Pyroclastic flows are fast-moving, avalanche-like, ground-hugging, incandescent mixtures of hot volcanic debris, ash, and gases that can travel at speeds in excess of 100 mph (160 km/h). Around 30,000 people were killed by pyroclastic flows during the 1902 eruption of Mont Pelée on the island of Martinique in the Caribbean.[5] In March–April 1982, three explosive eruptions of El Chichón Volcano in the State of Chiapas, southeastern Mexico, caused the worst volcanic disaster in that country's history. Villages within 8 km (5.0 mi) of the volcano were destroyed by pyroclastic flows, killing more than 2,000 people.[5]

Mount Unzen in southwestern Japan

Two Decade Volcanoes that erupted in 1991 provide examples of stratovolcano hazards. On June 15, Mount Pinatubo spewed ash 40 km (25 mi) into the air and produced huge pyroclastic flows and mudflows that devastated a large area around the volcano. Pinatubo, located 90 km (56 mi) from Manila, had been dormant for 600 years before the 1991 eruption, which ranks as one of the largest eruptions in the 20th century.[5] Also in 1991, Japan's Unzen Volcano, located on the island of Kyushu about 40 km (25 mi) east of Nagasaki, awakened from its 200-year slumber to produce a new lava dome at its summit. Beginning in June, repeated collapse of this erupting dome generated ash flows that swept down the mountain's slopes at speeds as high as 200 km/h (120 mph). Unzen is one of more than 75 active volcanoes in Japan; an eruption in 1792 killed more than 15,000 people—the worst volcanic disaster in the country's history.[5]

The 79 CE Plinian eruption of Mount Vesuvius, a stratovolcano looming adjacent to Naples, completely covered the cities of Pompeii and Herculaneum with pyroclastic surge deposits. The death toll ranged between 10,000 and 25,000. Mount Vesuvius is recognized as one of the most dangerous volcanoes, jointly because of its potential for powerful explosive eruptions and the high population density of the area (totaling about 3 million people) around its perimeter.

Ash

Apart from possibly affecting the climate, volcanic clouds from explosive eruptions also pose a serious hazard to aviation safety.[5] For example, during the 1982 eruption of Galunggung in Java, British Airways Flight 9 flew into the ash cloud, suffering temporary engine failure and structural damage. During the past two decades, more than 60 airplanes, mostly commercial jetliners, have been damaged by in-flight encounters with volcanic ash. Some of these encounters have resulted in the power loss of all engines, necessitating emergency landings. Luckily, to date no crashes have happened because of jet aircraft flying into volcanic ash.[5] Ash fall is a threat to health when inhaled, and is also a threat to property with enough accumulation. An accumulation of 30 cm (12 in) is sufficient to cause most buildings to collapse.[citation needed] Dense clouds of hot volcanic ash, caused by the collapse of an eruptive column or by being laterally expelled from the partial collapse of a volcanic edifice or lava dome during an explosive eruption, can produce devastating pyroclastic flows which can wipe out everything in their paths.

Lava

Mayon Volcano erupted on December 29, 2009, producing lava flows.

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Lava flows from stratovolcanoes are generally not a significant threat to people because the highly viscous lava moves slowly enough for people to move out of the path of flow. The lava flows are more of a threat to property.

However, not all stratovolcanoes erupt viscous, blocky lava. Mount Nyiragongo is very dangerous because its magma has an unusually low silica content, making it quite fluid. Fluid lavas are typically associated with the formation of broad shield volcanoes such as those of Hawaii, but Nyiragongo has very steep slopes down which lava can flow at up to 100 km/h (62 mph). Lava flows could sometimes melt down ice and glaciers that accumulated on the volcano's crater, creating massive lahar flows. Rarely, generally fluid lava could also generate a massive lava fountain, while lava of thicker viscosity can solidify within the vent, creating a block which can result in explosive eruptions.

Volcanic bombs

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Volcanic bombs are extrusive igneous rocks ranging from the size of a book to small automobile, that are explosively ejected from stratovolcanoes during their peak eruptive phases. These "bombs" can travel over 15 mi (20 km) away from the volcano, and present a risk to buildings and people while traveling at very high speeds (hundreds of miles per hour) through the air. The bombs do not themselves explode on impact, but rather carry enough force so as to have destructive effects as if they exploded.

Mudflows

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Mudflows (also called debris flows or lahars, an Indonesian term for volcanic mudflows) are mixtures of volcanic debris and water. The water usually comes from two sources: rainfall or the melting of snow and ice by hot volcanic debris, such as lava. Depending on the proportion of water to volcanic material, mudflows can range from soupy floods to thick, gooey flows that have the consistency of wet concrete.[5] As mudflows sweep down the steep sides of composite volcanoes, they have the strength and speed to flatten or bury everything in their paths. Hot ash and pyroclastic flows from the 1985 eruption of the Nevado del Ruiz Volcano in Colombia melted snow and ice atop the 5,390-m-high Andean peak; the ensuing mudflows buried the city of Armero, killing 25,000 people.[5]

Climatic effects

Paluweh eruption as seen from space

As per the above examples, while the Unzen eruptions have caused deaths and considerable local damage in the historic past, the impact of the June 1991 eruption of Mount Pinatubo was global. Slightly cooler-than-usual temperatures were recorded worldwide, and brilliant sunsets and sunrises were attributed to the particulates this eruption lofted high into the stratosphere. The aerosol that formed from the sulfur dioxide (SO2) and other gasses dispersed around the world. The SO2 mass in this cloud—about 22 million tons—combined with water (both of volcanic and stratospheric origin) formed droplets of sulfuric acid, blocking a portion of the sunlight from reaching the troposphere and ground. The cooling in some regions is thought to have been as much as 0.5 °C.[5] An eruption the size of Mount Pinatubo tends to affect the weather for a few years; the material injected into the stratosphere gradually drops into the troposphere, where it is washed away by rain and cloud precipitation.

A similar, but extraordinarily more powerful phenomenon occurred in the cataclysmic April 1815 eruption of Mount Tambora on Sumbawa Island in Indonesia. The Mount Tambora eruption is recognized as the most powerful eruption in recorded history. Its volcanic cloud lowered global temperatures by as much as 3.5 °C.[5] In the year following the eruption, most of the Northern Hemisphere experienced sharply cooler temperatures during the summer. In parts of Europe and North America, 1816 was known as the "Year Without a Summer", which caused a brief but bitter famine.

See also

References

  1.  This article incorporates public domain material from the United States Geological Survey document: Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12  This article incorporates public domain material from the United States Geological Survey document: Lua error in package.lua at line 80: module 'strict' not found.