Thermus aquaticus

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Thermus aquaticus
300px
Scientific classification
Domain:
Phylum:
Class:
Order:
Genus:
Species:
T. aquaticus
Binomial name
Thermus aquaticus
Brock & Freeze, 1969

Lua error in Module:Taxonbar/candidate at line 22: attempt to index field 'wikibase' (a nil value).

Thermus aquaticus is a species of bacterium that can tolerate high temperatures, one of several thermophilic bacteria that belong to the Deinococcus–Thermus group. It is the source of the heat-resistant enzyme Taq DNA polymerase, one of the most important enzymes in molecular biology because of its use in the polymerase chain reaction (PCR) DNA amplification technique.

History

When studies of biological organisms in hot springs began in the 1960s, scientists thought that the life of thermophilic bacteria could not be sustained in temperatures above about 55 °C (131 °F).[1] Soon, however, it was discovered that many bacteria in different springs not only survived, but also thrived in higher temperatures. In 1969, Thomas D. Brock and Hudson Freeze of Indiana University reported a new species of thermophilic bacterium which they named Thermus aquaticus.[2] The bacterium was first discovered in the Lower Geyser Basin of Yellowstone National Park, near the major geysers Great Fountain Geyser and White Dome Geyser,[3] and has since been found in similar thermal habitats around the world.

Biology

It thrives at 70 °C (158 °F), but can survive at temperatures of 50 °C to 80 °C (122 °F to 176 °F). This bacterium is a chemotroph—it performs chemosynthesis to obtain food. However, since its range of temperature overlaps somewhat with that of the photosynthetic cyanobacteria that share its ideal environment, it is sometimes found living jointly with its neighbors, obtaining energy for growth from their photosynthesis.

Morphology

Thermus aquaticus is generally of cylindrical shape with a diameter of 0.5 μm to 0.8 μm. The shorter rod shape has a length of 5 μm to 10 μm. The longer filament shape has a length that varies greatly and in some cases exceeds 200 μm. The rod-shaped bacteria have a tendency to aggregate. Associations of several individuals can lead to the formation of spherical bodies 10 μm to 20 μm in diameter, also called rotund bodies.[2][4]

Enzymes from T. aquaticus

T. aquaticus has become famous as a source of thermostable enzymes, particularly the Taq DNA polymerase, as described below.

  • Aldolase
Studies of this extreme thermophilic bacterium that could be grown in cell culture was initially centered on attempts to understand how protein enzymes (which normally inactivate at high temperature) can function at high temperature in thermophiles. In 1970, Freeze and Brock published an article describing a thermostable aldolase enzyme from T. aquaticus.[5]
The first polymerase enzyme isolated from T. aquaticus in 1974 was a DNA-dependent RNA polymerase,[6] used in the process of transcription.
  • Taq I restriction enzyme

Lua error in Module:Details at line 30: attempt to call field '_formatLink' (a nil value).

Most molecular biologists probably became aware of T. aquaticus in the late 1970s or early 1980s because of the isolation of useful restriction endonucleases from this organism.[7] Use of the term Taq to refer to Thermus aquaticus arose at this time from the convention of giving restriction enzymes short names, such as Sal and Hin, derived from the genus and species of the source organisms.

Lua error in Module:Details at line 30: attempt to call field '_formatLink' (a nil value).

DNA polymerase was first isolated from T. aquaticus in 1976.[8] The first advantage found for this thermostable (temperature optimum 80°C) DNA polymerase was that it could be isolated in a purer form (free of other enzyme contaminants) than could the DNA polymerase from other sources. Later, Kary Mullis and other investigators at Cetus Corporation discovered this enzyme could be used in the polymerase chain reaction (PCR) process for amplifying short segments of DNA,[9] eliminating the need to add enzyme after every cycle of thermal denaturation of the DNA. The enzyme was also cloned, sequenced, modified (to produce the shorter 'Stoffel fragment'), and produced in large quantities for commercial sale.[10] In 1989 Science magazine named Taq polymerase as its first "Molecule of the Year".[11] In 1993, Dr. Kary Mullis[12] was awarded the Nobel Prize for his work with PCR.
  • Other enzymes
The high optimum temperature for T. aquaticus allows researchers to study reactions under conditions for which other enzymes lose activity. Other enzymes isolated from this organism include DNA ligase, alkaline phosphatase, NADH oxidase, isocitrate dehydrogenase, amylomaltase, and fructose 1,6-disphosphate-dependent L-lactate dehydrogenase.

Controversy

The commercial use of enzymes from T. aquaticus has not been without controversy. After Dr. Brock's studies, samples of the organism were deposited in the American Type Culture Collection, a public repository. Other scientists, including those at Cetus, obtained it from there. As the commercial potential of Taq polymerase became apparent in the 1990s,[13] the National Park Service labeled its use as the "Great Taq Rip-off".[14] Researchers working in National Parks are now required to sign "benefits sharing" agreements that would send a portion of later profits back to the Park Service.

See also

References

  1. Thomas Brock's essay "Life at High Temperatures"
  2. 2.0 2.1 Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1993/mullis-lecture.html
  13. Lua error in package.lua at line 80: module 'strict' not found. — Detailed history of Cetus and the commercial aspects of PCR.
  14. Lua error in package.lua at line 80: module 'strict' not found.

Further reading

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.