Trimethylgallium

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Trimethylgallium
Structural formula of trimethylgallium
Ball-and-stick model of trimethylgallium
Names
IUPAC name
trimethylgallane, trimethanidogallium
Identifiers
1445-79-0 YesY
ChemSpider 14323 YesY
Jmol 3D model Interactive image
PubChem 15051
  • InChI=1S/3CH3.Ga/h3*1H3; YesY
    Key: XCZXGTMEAKBVPV-UHFFFAOYSA-N YesY
  • InChI=1/3CH3.Ga/h3*1H3;/rC3H9Ga/c1-4(2)3/h1-3H3
    Key: XCZXGTMEAKBVPV-YHXBHQJBAF
  • [Ga](C)(C)C
Properties
Ga(CH3)3
Molar mass 114.827 g/mol
Appearance clear colourless liquid
Melting point −15 °C (5 °F; 258 K)
Boiling point 55.7 °C (132.3 °F; 328.8 K)
Vapor pressure {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Trimethylgallium, Ga(CH3)3, often abbreviated to TMG or TMGa, is the preferred metalorganic source of gallium for metalorganic vapour phase epitaxy (MOVPE) of gallium-containing compound semiconductors, such as GaAs, GaN, GaP, GaSb, InGaAs, InGaN, AlGaInP, InGaP and AlInGaNP.

Properties

TMG is a clear, colorless, pyrophoric liquid.[1] Even the hydrocarbon solutions of TMG, when sufficiently saturated, are known to catch fire on exposure to air. TMG is known to react violently with water and other compounds that are capable of providing labile and active hydrogen (i.e. protons). Therefore, TMG needs to be handled with care and caution, e.g. stored in a cool, dry place at 0-25 °C, under inert atmosphere, and ensuring that storage temperatures would not exceed 40 °C to avoid deterioration.

Preparation

Trimethylgallium may be prepared by the reaction of dimethylzinc with gallium trichloride. The less volatile diethyl ether adduct can be prepared by using methylmagnesium iodide in ether in place of dimethylzinc; the ether ligands may be displaced with liquid ammonia as well.[2]

Applications

The material is used in the production of LED lighting and semiconductors as a metalorganic chemical vapor deposition precursor.

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.