Alternant matrix
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
In linear algebra, an alternant matrix is a matrix with a particular structure, in which successive columns have a particular function applied to their entries. An alternant determinant is the determinant of an alternant matrix. Such a matrix of size m × n may be written out as
or more succinctly
for all indices i and j. (Some authors use the transpose of the above matrix.)
Examples of alternant matrices include Vandermonde matrices, for which , and Moore matrices, for which
.
If and the
functions are all polynomials, there are some additional results: if
for any
, then the determinant of any alternant matrix is zero (as a row is then repeated), thus
divides the determinant for all
. As such, if one takes
(a Vandermonde matrix), then divides such polynomial alternant determinants. The ratio
is called a bialternant. The case where each function
forms the classical definition of the Schur polynomials.
Alternant matrices are used in coding theory in the construction of alternant codes.
See also
References
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
<templatestyles src="Asbox/styles.css"></templatestyles>