Bergman space

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

In complex analysis, functional analysis and operator theory, a Bergman space is a function space of holomorphic functions in a domain D of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable. Specifically, for 0 < p < ∞, the Bergman space Ap(D) is the space of all holomorphic functions f in D for which the p-norm is finite:

\|f\|_{A^p(D)} := \left(\int_D |f(x+iy)|^p\,dx\,dy\right)^{1/p} < \infty.

The quantity \|f\|_{A^p(D)} is called the norm of the function f; it is a true norm if p \geq 1. Thus Ap(D) is the subspace of holomorphic functions that are in the space Lp(D). The Bergman spaces are Banach spaces, which is a consequence of the estimate, valid on compact subsets K of D:

\sup_{z\in K} |f(z)| \le C_K\|f\|_{L^p(D)}.

 

 

 

 

(1)

Thus convergence of a sequence of holomorphic functions in Lp(D) implies also compact convergence, and so the limit function is also holomorphic.

If p = 2, then Ap(D) is a reproducing kernel Hilbert space, whose kernel is given by the Bergman kernel.

Special cases and generalisations

If the domain D is bounded, then the norm is often given by

\|f\|_{A^p(D)} := \left(\int_D |f(z)|^p\,dA\right)^{1/p} \; \; \; \; \; (f \in A^p(D)),

where A is a normalised Lebesgue measure of the complex plane, i.e. dA = dz/Area(D)</. Alternatively dA = dz/π is used, regardless of the area of D. The Bergman space is usually defined on the open unit disk \mathbb{D} of the complex plane, in which case A^p(\mathbb{C}):=A^p. In the Hilbert space case, given f(z)= \sum_{n=0}^\infty a_n z^n \in A^2, we have

\|f\|^2_{A^2} := \frac{1}{\pi} \int_\mathbb{D} |f(z)|^2 \, dz = \sum_{n=0}^\infty \frac{|a_n|^2}{n+1},

that is, A2 is isometrically isomorphic to the weighted p(1/(n+1)) space.[1] In particular the polynomials are dense in A2. Similarly, if D = ℂ+), the right (or the upper) complex half-plane, then

\|F\|^2_{A^2(\mathbb{C}_+)} := \frac{1}{\pi} \int_{\mathbb{C}_+} |F(z)|^2 \, dz = \int_0^\infty |f(t)|^2\frac{dt}{t},

where F(z)= \int_0^\infty f(t)e^{-tz} \, dt, that is, A2(ℂ+) is isometrically isomorphic to the weighted Lp1/t (0,∞) space (via the Laplace transform).[2][3]

The weighted Bergman space Ap(D) is defined in an analogous way,[1] i.e.

\|f\|_{A^p_w (D)} := \left( \int_D |f(x+iy)|^2 \, w(x+iy) \, dx \, dy \right)^{1/p},

provided that w : D → [0, ∞) is chosen in such way, that A^p_w(D) is a Banach space (or a Hilbert space, if p = 2). In case where  D= \mathbb{D}, by a weighted Bergman space A^p_\alpha[4] we mean the space of all analytic functions f such that

 \|f\|_{A^p_\alpha} := \left( \frac{1}{\pi}\int_\mathbb{D} |f(z)|^p \, (1-|z|^p)^\alpha dz \right)^{1/p} < \infty,

and similarly on the right half-plane (i.e. A^p_\alpha(\mathbb{C}_+)) we have[5]

 \|f\|_{A^p_\alpha(\mathbb{C}_+)} := \left( \frac{1}{\pi}\int_{\mathbb{C}_+} |f(x+iy)|^p x^\alpha \, dx \, dy \right)^{1/p},

and this space is isometrically isomorphic, via the Laplace transform, to the space L^2(\mathbb{R}_+, \, d\mu_\alpha),[6][7] where

d\mu_\alpha := \frac{\Gamma(\alpha+1)}{2^\alpha t^{\alpha+1}} \, dt

(here Γ denotes the Gamma function).

Further generalisations are sometimes considered, for example A^2_\nu denotes a weighted Bergman space (often called a Zen space[3]) with respect to a translation-invariant positive regular Borel measure \nu on the closed right complex half-plane \overline{\mathbb{C}_+}, that is

A^p_\nu := \left\{ f : \mathbb{C}_+ \longrightarrow \mathbb{C} \; \text{analytic} \; : \; \|f\|_{A^p_\nu} := \left( \sup_{\epsilon>0} \int_{\overline{\mathbb{C}_+}} |f(z+\epsilon)|^p \, d\nu(z) \right)^{1/p} < \infty \right\}.

Reproducing kernels

The reproducing kernel k_z^{A^2} of A2 at point z \in \mathbb{D} is given by[1]

 k_z^{A^2}(\zeta)=\frac{1}{(1-\overline{z}\zeta)^2} \; \; \; \; \; (\zeta \in \mathbb{D}),

and similarly for A^2(\mathbb{C}_+) we have[5]

 k_z^{A^2(\mathbb{C}_+)}(\zeta)=\frac{1}{(\overline{z}+\zeta)^2} \; \; \; \; \; (\zeta \in \mathbb{C}_+),.

In general, if \varphi maps a domain \Omega conformally onto a domain D, then[1]

k^{A^2(\Omega)}_z (\zeta) = k^{\mathcal{A}^2(D)}_{\varphi(z)}(\varphi(\zeta)) \, \overline{\varphi'(z)}\varphi'(\zeta) \; \; \; \; \; (z, \zeta \in \Omega).

In weighted case we have[4]

k_z^{A^2_\alpha} (\zeta) = \frac{\alpha+1}{(1-\overline{z}\zeta)^{\alpha+2}} \; \; \; \; \; (z, \zeta \in \mathbb{D}),

and[5]

k_z^{A^2_\alpha(\mathbb{C}_+)} (\zeta) = \frac{2^\alpha(\alpha+1)}{(\overline{z}+\zeta)^{\alpha+2}} \; \; \; \; \; (z, \zeta \in \mathbb{C}_+).

References

  1. 1.0 1.1 1.2 1.3 Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 Lua error in package.lua at line 80: module 'strict' not found.
  4. 4.0 4.1 Lua error in package.lua at line 80: module 'strict' not found.
  5. 5.0 5.1 5.2 Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.

Further reading

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found..

See also


<templatestyles src="Asbox/styles.css"></templatestyles>