Diphosphorus

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Diphosphorus
Stick model of diphosphorus
Error creating thumbnail: File missing
Names
IUPAC name
Diphosphorus
Systematic IUPAC name
Diphosphyne[1]
Identifiers
12185-09-0 YesY
ChEBI CHEBI:33472 YesY
ChemSpider 4574176 YesY
1400241
Jmol 3D model Interactive image
PubChem 5460700
  • InChI=1S/P2/c1-2 YesY
    Key: FOBPTJZYDGNHLR-UHFFFAOYSA-N YesY
  • InChI=1/P2/c1-2
    Key: FOBPTJZYDGNHLR-UHFFFAOYAU
  • P#P
Properties
P2
Molar mass 61.95 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Diphosphorus is an inorganic chemical with the chemical formula P
2
. Unlike its nitrogen group neighbor nitrogen, which forms a stable N2 molecule with a nitrogen to nitrogen triple bond, phosphorus prefers a tetrahedral form P4 because P-P pi-bonds are high in energy. Diphosphorus is, therefore, very reactive with a bond-dissociation energy (117 kcal/mol or 490 kJ/mol) half that of dinitrogen. The bond distance has been measured at 1.8934 Å.[2]

Diphosphorus has been generated by heating white phosphorus at 1100 kelvins. Nevertheless, some advancements have been obtained in generating the diatomic molecule in homogeneous solution under normal conditions with the use of some transition metal complexes (based on, for example, tungsten and niobium).[3]

The molecule attracted attention in 2006, when a new method for its synthesis at milder temperatures emerged.[3]

This method is a variation on nitrogen expulsion in azides with formation of a nitrene. The synthesis of the diphosphorus precursor consists of reacting a terminal niobium phosphide with a chloroiminophosphane:

Diphosphorus precursor

Heating this compound at 50 °C in 1,3-cyclohexadiene serving as a solvent and as a trapping reagent expulses diphosphorus, which is reactive, as it is forms a double Diels-Alder adduct and the niobium imido compound:

Diphosphorus reaction

The same imido compound also forms when the thermolysis is performed in toluene but then the fate of diphosphorus is unknown.

P2 has been suggested to form as an intermediate in the photolysis of P4[4] and in the presence of 2,3-dimethyl-1,3-butadiene the diphosphane is again formed.[5] To date, no direct evidence of P2 formation via P4 photolysis exists.

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.

External links