Image (category theory)
From Infogalactic: the planetary knowledge core
Given a category C and a morphism in C, the image of f is a monomorphism
satisfying the following universal property:
- There exists a morphism
such that
.
- For any object Z with a morphism
and a monomorphism
such that
, there exists a unique morphism
such that
.
Remarks:
- such a factorization does not necessarily exist
- g is unique by definition of monic (= left invertible, abstraction of injectivity)
- m is monic.
- h=lm already implies that m is unique.
- k=mg
File:Image diagram category theory.svg
The image of f is often denoted by im f or Im(f).
One can show that a morphism f is epic if and only if f = im f.
Examples
In the category of sets the image of a morphism is the inclusion from the ordinary image
to
. In many concrete categories such as groups, abelian groups and (left- or right) modules, the image of a morphism is the image of the correspondent morphism in the category of sets.
In any normal category with a zero object and kernels and cokernels for every morphism, the image of a morphism can be expressed as follows:
- im f = ker coker f
This holds especially in abelian categories.
See also
References
- Section I.10 of Lua error in package.lua at line 80: module 'strict' not found.