Relative angular momentum

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Lua error in package.lua at line 80: module 'strict' not found. In celestial mechanics, the relative angular momentum (\mathbf{H_{{2}/{1}}}\,\!) of an orbiting body (m_2\,\!) relative to a central body (m_1\,\!) is the moment of (m_2\,\!)'s relative linear momentum:

\mathbf{H_{{2}/{1}}}=\mathbf{r}\times m_2\mathbf{v}\,\!

where:

For a body in an unperturbed orbit about a central body, the orbital plane is stationary, and the relative angular momentum (\mathbf{H_{{2}/{1}}}\,\!) is perpendicular to the orbital plane.
For perturbed orbits where the orbital plane is in motion, the relative angular momentum vector is perpendicular to the (osculating) orbital plane at only two points in the orbit.

Uses

In astrodynamics relative angular momentum is usually used to derive specific relative angular momentum (\mathbf{h}\,\!):

\mathbf{h}=\mathbf{H_{{2}/{1}}}/m_2\,\!

where:

  • m_2\,\! is mass of the orbiting body.

See also

References

<templatestyles src="Asbox/styles.css"></templatestyles>

<templatestyles src="Asbox/styles.css"></templatestyles>