Stella octangula number
In mathematics, a stella octangula number is a figurate number based on the stella octangula, of the form n(2n2 − 1).[1][2]
The sequence of stella octangula numbers is
Ljunggren's equation
There are only two positive square stella octangula numbers, 1 and 9653449 = 31072 = (13 × 239)2, corresponding to n = 1 and n = 169 respectively.[1][3] The elliptic curve describing the square stella octangula numbers,
may be placed in the equivalent Weierstrass form
by the change of variables x = 2m, y = 2n. Because the two factors n and 2n2 − 1 of the square number m2 are relatively prime, they must each be squares themselves, and the second change of variables and
leads to Ljunggren's equation
A theorem of Siegel states that every elliptic curve has only finitely many integer solutions, and Wilhelm Ljunggren (1942) found a difficult proof that the only integer solutions to his equation were (1,1) and (239,13), corresponding to the two square stella octangula numbers.[4] Louis J. Mordell conjectured that the proof could be simplified, and several later authors published simplifications.[3][5][6]
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
External links
- ↑ 1.0 1.1 1.2 "Sloane's A007588 : Stella octangula numbers: n*(2*n^2 - 1)", The On-Line Encyclopedia of Integer Sequences. OEIS Foundation..
- ↑ Lua error in package.lua at line 80: module 'strict' not found..
- ↑ 3.0 3.1 3.2 Lua error in package.lua at line 80: module 'strict' not found..
- ↑ Lua error in package.lua at line 80: module 'strict' not found..
- ↑ Lua error in package.lua at line 80: module 'strict' not found..
- ↑ Lua error in package.lua at line 80: module 'strict' not found..