Stirling polynomials

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Lua error in package.lua at line 80: module 'strict' not found.

In mathematics, the Stirling polynomials are a family of polynomials that generalize important sequences of numbers appearing in combinatorics and analysis, the Stirling numbers and the Bernoulli numbers.

Definition and examples

For nonnegative integers k, the Stirling polynomials Sk(x) are defined by the generating function equation

\left( {t \over {1-e^{-t}}} \right) ^{x+1}= \sum_{k=0}^\infty S_k(x){t^k \over k!}.

The first 10 Stirling polynomials are:

k S_k(x)\,
0 1\,
1 {\scriptstyle\frac{1}{2}}(x+1)\,
2 {\scriptstyle\frac{1}{12}} (3x^2+5x+2) \,
3 {\scriptstyle\frac{1}{8}} (x^3+2x^2+x) \,
4 {\scriptstyle\frac{1}{240}} (15x^4+30x^3+5x^2-18x-8) \,
5 {\scriptstyle\frac{1}{96}} (3x^5+5x^4-5x^3-13x^2-6x) \,
6 {\scriptstyle\frac{1}{4032}} (63x^6+63x^5-315x^4-539x^3-84x^2+236x+96) \,
7 {\scriptstyle\frac{1}{1152}} (9x^7-84x^5-98x^4+91x^3+194x^2+80x) \,
8 {\scriptstyle\frac{1}{34560}} (135x^8-180x^7-1890x^6-840x^5+6055x^4+8140x^3+884x^2-3088x-1152) \,
9 {\scriptstyle\frac{1}{7680}} (15x^9-45x^8-270x^7+182x^6+1687x^5+1395x^4-1576x^3-2684x^2-1008x) \,

Properties

Special values include:

The sequence S_k(x-1) is of binomial type, since S_k(x+y-1)= \sum_{i=0}^k {k \choose i} S_i(x-1) S_{k-i}(y-1). Moreover, this basic recursion holds: S_k(x)= (x-k) {S_k(x-1) \over x} + k S_{k-1}(x+1).

Explicit representations involving Stirling numbers can be deduced with Lagrange's interpolation formula:

\begin{align}S_k(x)&= \sum_{n=0}^k (-1)^{k-n} S_{k+n,n} {{x+n \choose n} {x+k+1 \choose k-n} \over {k+n \choose n}} \\ 
&= \sum_{n=0}^k (-1)^n s_{k+n+1,n+1} {{x-k \choose n} {x-k-n-1 \choose k-n} \over {k+n \choose k}}\\
&= k! \sum_{j=0}^k (-1)^{k-j}\sum_{m=j}^k {x+m\choose m}{m\choose j}L_{k+m}^{(-k-j)}(-j).\end{align}

Here, L_n^{(\alpha)} are Laguerre polynomials.

These following relations hold as well:

{k+m \choose k} S_k(x-m)= \sum_{i=0}^k (-1)^{k-i} {k+m \choose i} S_{k-i+m,m} \cdot S_i(x),

where S_{k,n} is the Stirling number of the second kind and

{k-m \choose k} S_k(x+m)= \sum_{i=0}^k {k-m \choose i} s_{m,m-k+i} \cdot S_i(x),

where s_{k,n} is the Stirling number of the first kind.

By differentiating the generating function it readily follows that

S_k^\prime(x)=-\sum_{j=0}^{k-1} {k\choose j} S_j(x) \frac{B_{k-j}}{k-j}.

Relations to other polynomials

Closely related to Stirling polynomials are Nørlund polynomials (or generalized Bernoulli polynomials) with generating function

\left( {t \over {e^t-1}} \right) ^a e^{z t}= \sum_{k=0}^\infty B^{(a)}_k(z){t^k \over k!}.

The relation is given by S_k(x)= B_k^{(x+1)}(x+1).

See also

References

  • Lua error in package.lua at line 80: module 'strict' not found.

External links