Personal RF safety monitors

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Electromagnetic field dosimeters measure the exposure to electromagnetic radiation in certain ranges of the electromagnetic spectrum. This article concentrates on dosimeters used in the telecommunication industry, which measure exposure to radio spectrum radiation. Other dosimeters, like extremely low frequency dosimeters which measure exposure to radiation from electric power lines, also exist.

Introduction

Electromagnetic field dosimeters, as used in the cellular phone industry, are referred to as "personal RF safety monitors" or personal protection monitors (PPM).[1] They form part of the personal protective equipment worn by a person working in areas exposed to radio spectrum radiation. A personal RF safety monitor is typically worn either on the torso region of the body or handheld and is required by the occupational safety and health acts of many telecommunication companies.

Most of the scientifically proven RF safety monitors are calibrated to measure the RF exposure as a percentage of the two most common international RF safety guidelines: International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines[2] and the U.S. Federal Communications Commission (FCC).[3] The ICNIRP guidelines are also endorsed by the WHO.[4] Personal RF Safety monitors were originally designed for RF Engineers working in environments where they could be exposed to high levels of RF energy or be working close to a RF source, for example working at the top of a telecommunication tower, or working on the rooftop of a building with transmitting antennas present. Most international RF safety programs include the training and use of Personal RF safety monitors.[5]

In some cases the RF safety monitor comes in a version or mode for the general public.[6] These meters can then be used to determine areas where the public might be exposed to high levels of RF energy or it might be used to indicate the RF level at areas where the general public has access.

Specification

The specifications of a RF monitor determines the work environment it can be used for. Wideband RF monitors can be used at a broader variety of base station site types than for example a narrowband, cellular RF monitor which is designed only to be used in the mobile telephone- and data networks. Below find a table with the different basic specifications of some RF monitors:

Specification EME Guard XS [7] Narda Radman [8] SafeOne [9] fieldSENSE [10] EME Guard [11]
Frequency Range 80 MHz – 6 GHz E-Field 1 MHz- 40 GHz

H-Field 1 MHz – 1 GHz

10-10000 MHz E-Field 380 MHz- 2.7 GHz 27 MHz- 40 GHz
Directivity Isotropic (Tri-axial) Isotropic (Tri-axial) Isotropic (Tri-axial) Vertically Polarized Isotropic (Tri-axial)
Reference standard ICNIRP

FCC

Safety Code 6

User-definable

2004/40/EC

ICNIRP

FCC

IEEE

Safety Code 6

BGV B11, Exp1

ICNIRP

FCC

IEEE

NCRP

Safety Code 6

ICNIRP

FCC

IEEE

NCRP

ICNIRP

FCC

Safety Code 6

User-definable

Exposure level indicators 1 X LED => 1%

2 X LED => 5%

3 X LED => 20%

4 X LED => 100%

5 X LED => 225%

6 X LED => 500%

7 X LED => 2000%

(Broadcast 100 MHz:

Visual & Audio Alarms

Activated 5 to 350 V/m

User-definable at factory)

1 X LED => 12.5%

2 X LED => 25%

3 X LED => 50% (Buzzer alarm)

4 X LED => 100% (Buzzer alarm)

1 X LED => 5%

2 X LED => 15%

3 X LED => 40%

4 X LED => 63% (1 Hz buzzer alarm)

5 X LED => 100% (1 Hz buzzer alarm)

6 X LED => 160% (2 Hz buzzer alarm)

7 X LED => 250% (4 Hz buzzer alarm)

1 X LED => 25%

2 X LED => 50%

3 X LED => 75%

4 X LED => 100%

(Vibrator and buzzer alarm user-definable)

Data logger No Certain models No No Yes
Battery life >100 hours 200 hours 2,000 hours 250 hours >100 hours
Dimensions 132.5 x 48.5 x 28.7 mm 157 X 36 X 26 mm 58 x 105 x 23 mm 132 X 41 X 23 mm 172 X 60 X 35 mm
Weight 120g 130g 88g 91g 320g
Operating temperature -10⁰C to +50⁰C -10⁰C to + 55⁰C -10⁰C to +40⁰C -10⁰C to +50⁰C -10⁰C to +50⁰C
Calibration interval 24 Months 36 Months 24 Months 24 Months 24 Months
Approx. price USD $550 $1700 $700 $500 $1800

Operating instructions

Each specific personal RF safety monitor has its own operating instructions. And most of the monitors have different operating modes. For instance, the Narda Radman has a mode in which it can be body worn by the operator, but it also has a probe mode where the operator can scan certain areas to find accurate exclusion zones.[12] The fieldSENSE on the other hand has a monitor and measure mode.[13] The measure mode is similar to the Radman’s probe mode, but the monitor mode is used by mounting the fieldSENSE onto an inactive antenna and then it is safe to work on the antenna until the fieldSENSE raise an alarm to warn RF technicians that the antenna is live and that any work on the antennas should be ceased until deactivation is confirmed. A few of the newer models of RF monitors such as the EME Guard also have a data logging functionality that can log the RF exposure of a worker over time.[8][11]

List of personal RF monitors

  • EME Guard [11]
  • EME Guard XS[14]
  • EME SPY 140[15]
  • Narda Radman [16]
  • Narda Radman XT [16]
  • Nardalert [17]
  • Occupational fieldSENSE [18]
  • Public fieldSENSE [6]
  • SafeOne® Pro SI-1100XT[9]
  • FlashRad [19]

Gallery

References

  1. https://books.google.com/books?id=V8Lk2ghPl7IC&pg=PA1904&lpg=PA1904&dq=fcc+rf+monitors+ppm&source=bl&ots=b0TqBCuBJ6&sig=9QyY-CcpuSi8i9vrc-ZaafMYpgY&hl=en&sa=X&ei=fEoQVYeFLY_5yQTD4oCQBA&ved=0CEkQ6AEwBw#v=onepage&q=fcc%20rf%20monitors%20ppm&f=false
  2. https://www.osha.gov/dts/osta/otm/otm_ii/otm_ii_3.html
  3. http://www.fcc.gov/oet/ea/eameasurements.html
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1611107&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1611107%7Ctitle"IEEE Recommended Practice for Radio Frequency Safety Programs, 3 kHz to 300 GHz," IEEE, International Committee on Electromagnetic Safety, New York, IEEE Std C95.7, 2005
  6. 6.0 6.1 Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. 8.0 8.1 Lua error in package.lua at line 80: module 'strict' not found.
  9. 9.0 9.1 http://www.lbagroup.com/products/safeone-rf-monitors
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. 11.0 11.1 11.2 Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. 16.0 16.1 Lua error in package.lua at line 80: module 'strict' not found.
  17. Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.