Cubic honeycomb

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Cubic honeycomb
Cubic honeycomb.pngPartial cubic honeycomb.png
Type Regular honeycomb
Family Hypercube honeycomb
Indexing[1] J11,15, A1
W1, G22
Schläfli symbol {4,3,4}
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Cell type {4,3}
Face type {4}
Vertex figure Cubic honeycomb verf.png
(octahedron)
Space group
Fibrifold notation
Pm3m (221)
4:2
Coxeter group {\tilde{C}}_3, [4,3,4]
Dual self-dual
Properties vertex-transitive, quasiregular

The cubic honeycomb or cubic cellulation is the only regular space-filling tessellation (or honeycomb) in Euclidean 3-space, made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway calls this honeycomb a cubille.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Cartesian coordinates

The Cartesian coordinates of the vertices are:

(i, j, k)
for all integral values: i,j,k, with edges parallel to the axes and with an edge length of 1.

Related honeycombs

It is part of a multidimensional family of hypercube honeycombs, with Schläfli symbols of the form {4,3,...,3,4}, starting with the square tiling, {4,4} in the plane.

It is one of 28 uniform honeycombs using convex uniform polyhedral cells.

Isometries of simple cubic lattices

Simple cubic lattices can be distorted into lower symmetries, represented by lower crystal systems:

Crystal system Monoclinic
Triclinic
Orthorhombic Tetragonal Rhombohedral Cubic
Unit cell Parallelepiped Cuboid Trigonal
trapezohedron
Cube
Point group
Order
Rotation subgroup
[ ], (*)
Order 2
[ ]+, (1)
[2,2], (*222)
Order 8
[2,2]+, (222)
[4,2], (*422)
Order 16
[4,2]+, (422)
[3], (*33)
Order 6
[3]+, (33)
[4,3], (*432)
Order 48
[4,3]+, (432)
Diagram Monoclinic.svg Orthorhombic.svg Tetragonal.svg Hexagonal latticeR.svg Lattic simple cubic.svg
Space group
Rotation subgroup
Pm (6)
P1 (1)
Pmmm (47)
P222 (16)
P4/mmm (123)
P422 (89)
R3m (160)
R3 (146)
Pm3m (221)
P432 (207)
Coxeter notation - [∞]a×[∞]b×[∞]c [4,4]a×[∞]c - [4,3,4]a
Coxeter diagram - CDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png - CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

Uniform colorings

There is a large number of uniform colorings, derived from different symmetries. These include:

Coxeter notation
Space group
Coxeter diagram Schläfli symbol Partial
honeycomb
Colors by letters
[4,3,4]
Pm3m (221)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png = CDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4.pngCDel node.png
{4,3,4} Partial cubic honeycomb.png 1: aaaa/aaaa
[4,31,1] = [4,3,4,1+]
Fm3m (225)
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png {4,31,1} Bicolor cubic honeycomb.png 2: abba/baab
[4,3,4]
Pm3m (221)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png t0,3{4,3,4} Runcinated cubic honeycomb.png 4: abbc/bccd
[[4,3,4]]
Pm3m (229)
CDel branch.pngCDel 4a4b.pngCDel nodes 11.png t0,3{4,3,4} 4: abbb/bbba
[4,3,4,2,∞] CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node 1.png
or CDel labelinfin.pngCDel branch 11.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png
{4,4}×t{∞} 50px 2: aaaa/bbbb
[4,3,4,2,∞] CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png t1{4,4}×{∞} 50px 2: abba/abba
[∞,2,∞,2,∞] CDel labelinfin.pngCDel branch 11.pngCDel 2.pngCDel labelinfin.pngCDel branch 11.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png t{∞}×t{∞}×{∞} 50px 4: abcd/abcd
[∞,2,∞,2,∞] = [4,(3,4)*] CDel labelinfin.pngCDel branch 11.pngCDel 2.pngCDel labelinfin.pngCDel branch 11.pngCDel 2.pngCDel labelinfin.pngCDel branch 11.png = CDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4g.pngCDel node g.png t{∞}×t{∞}×t{∞} 50px 8: abcd/efgh

Related polytopes and honeycombs

It is related to the regular 4-polytope tesseract, Schläfli symbol {4,3,3}, which exists in 4-space, and only has 3 cubes around each edge. It's also related to the order-5 cubic honeycomb, Schläfli symbol {4,3,5}, of hyperbolic space with 5 cubes around each edge.

It is in a sequence of polychora and honeycomb with octahedral vertex figures.

It in a sequence of regular polytopes and honeycombs with cubic cells.

<templatestyles src="Template:Hidden begin/styles.css"/>
{4,3,p} regular honeycombs
Space S3 E3 H3
Form Finite Affine Compact Paracompact Noncompact
Name
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel p.pngCDel node.png
{4,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{4,3,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png
{4,3,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
{4,3,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png
CDel node 1.pngCDel ultra.pngCDel node.pngCDel split1.pngCDel branch.pngCDel uaub.pngCDel nodes 11.png
{4,3,7}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
{4,3,8}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel label4.png
... {4,3,∞}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel labelinfin.png
Image Stereographic polytope 8cell.png Cubic honeycomb.png H3 435 CC center.png H3 436 CC center.png
Vertex
figure

CDel node 1.pngCDel 3.pngCDel node.pngCDel p.pngCDel node.png
8-cell verf.png
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Cubic honeycomb verf.png
{3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel nodes.png
60px
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 63-t2.png
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.png
H2 tiling 237-4.png
{3,7}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
H2 tiling 238-4.png
{3,8}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel label4.png
H2 tiling 23i-4.png
{3,∞}
CDel node 1.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel labelinfin.png

Related Euclidean tessellations

The [4,3,4], CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png, Coxeter group generates 15 permutations of uniform tessellations, 9 with distinct geometry including the alternated cubic honeycomb. The expanded cubic honeycomb (also known as the runcinated tesseractic honeycomb) is geometrically identical to the cubic honeycomb.

The [4,31,1], CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png, Coxeter group generates 9 permutations of uniform tessellations, 4 with distinct geometry including the alternated cubic honeycomb.

This honeycomb is one of five distinct uniform honeycombs[2] constructed by the {\tilde{A}}_3 Coxeter group. The symmetry can be multiplied by the symmetry of rings in the Coxeter–Dynkin diagrams:


Rectified cubic honeycomb

Rectified cubic honeycomb
Type Uniform honeycomb
Cells Octahedron Octahedron.svg
Cuboctahedron Cuboctahedron.svg
Schläfli symbol r{4,3,4} or t1{4,3,4}
r{3[4]}
Coxeter diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png = CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node 1.png = CDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png = CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
Vertex figure 80px
Cuboid
Space group
Fibrifold notation
Pm3m (221)
4:2
Coxeter group {\tilde{C}}_3, [4,3,4]
Dual oblate octahedrille
(Square bipyramidal honeycomb)
Properties vertex-transitive, edge-transitive

The rectified cubic honeycomb or rectified cubic cellulation is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of octahedra and cuboctahedra in a ratio of 1:1.

John Horton Conway calls this honeycomb a cuboctahedrille, and its dual oblate octahedrille.

300px160px

Symmetry

There are four uniform colorings for the cells of this honeycomb with reflective symmetry, listed by their Coxeter group, and Wythoff construction name, and the Coxeter diagram below.

Symmetry [4,3,4]
{\tilde{C}}_3
[1+,4,3,4]
[4,31,1], {\tilde{B}}_3
[4,3,4,1+]
[4,31,1], {\tilde{B}}_3
[1+,4,3,4,1+]
[3[4]], {\tilde{A}}_3
Space group Pm3m
(221)
Fm3m
(225)
Fm3m
(225)
F43m
(216)
Coloring 80px 80px 80px 80px
Coxeter
diagram
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node 1.png
Vertex figure 80px 80px 80px 80px
Vertex
figure
symmetry
D4h
[4,2]
(*224)
order 16
D2h
[2,2]
(*222)
order 8
C4v
[4]
(*44)
order 8
C2v
[2]
(*22)
order 4

This honeycomb can be divided on trihexagonal tiling planes, using the hexagon centers of the cuboctahedra, creating two triangular cupolae. This scaliform honeycomb is represented by Coxeter diagram CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png, and symbol s3{2,6,3}, with coxeter notation symmetry [2+,6,3].

320px.

Truncated cubic honeycomb

Truncated cubic honeycomb
Type Uniform honeycomb
Schläfli symbol t{4,3,4} or t0,1{4,3,4}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png = CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
Cell type 3.8.8, {3,4}
Face type {3}, {4}, {8}
Vertex figure Truncated cubic honeycomb verf.png
Isosceles square pyramid
Space group
Fibrifold notation
Pm3m (221)
4:2
Coxeter group {\tilde{C}}_3, [4,3,4]
Dual Pyramidille
(Hexakis cubic honeycomb)
Properties vertex-transitive

The truncated cubic honeycomb or truncated cubic cellulation is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of truncated cubes and octahedra in a ratio of 1:1.

John Horton Conway calls this honeycomb a truncated cubille, and its dual pyramidille.

300px160px

Symmetry

There is a second uniform coloring by reflectional symmetry of the Coxeter groups, the second seen with alternately colored truncated cubic cells.

Construction Bicantellated alternate cubic Truncated cubic honeycomb
Coxeter group [4,31,1], {\tilde{B}}_3 [4,3,4], {\tilde{C}}_3
=<[4,31,1]>
Space group Fm3m Pm3m
Coloring 120px 120px
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png = CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Vertex figure 80px Truncated cubic honeycomb verf.png

Bitruncated cubic honeycomb

Bitruncated cubic honeycomb
Type Uniform honeycomb
Schläfli symbol 2t{4,3,4} or t1,2{4,3,4}
Coxeter diagram CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png or CDel branch 11.pngCDel 4a4b.pngCDel nodes.png

CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.png = CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png = CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png

Cell type (4.6.6)
Face types square {4}
hexagon {6}
Edge figure isosceles triangle {3}
Vertex figure Bitruncated cubic honeycomb verf2.png
(disphenoid tetrahedron)
Space group
Fibrifold notation
Coxeter notation
Im3m (229)
8o:2
[[4,3,4]]
Coxeter group {\tilde{C}}_3, [4,3,4]
Dual Oblate tetrahedrille
Disphenoid tetrahedral honeycomb
Properties isogonal, isotoxal, isochoric

The bitruncated cubic honeycomb or bitruncated cubic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of truncated octahedra. It has 4 truncated octahedra around each vertex. Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive. It is one of 28 uniform honeycombs.

John Horton Conway calls this honeycomb a truncated octahedrille in his Architectonic and catoptric tessellation list, with its dual called an oblate tetrahedrille, also called a disphenoid tetrahedral honeycomb. Although a regular tetrahedron can not tessellate space alone, this dual has identical disphenoid tetrahedron cells with isosceles triangle faces.

It can be realized as the Voronoi tessellation of the body-centred cubic lattice. Lord Kelvin conjectured that a variant of the bitruncated cubic honeycomb (with curved faces and edges, but the same combinatorial structure) is the optimal soap bubble foam. However, the Weaire–Phelan structure is a less symmetrical, but more efficient, foam of soap bubbles.

180px 128px

Symmetry

The vertex figure for this honeycomb is a disphenoid tetrahedron, and it is also the Goursat tetrahedron (fundamental domain) for the {\tilde{A}}_3 Coxeter group. This honeycomb has four uniform constructions, with the truncated octahedral cells having different Coxeter groups and Wythoff constructions. These uniform symmetries can be represented by coloring differently the cells in each construction.

Five uniform colorings by cell
Space group Im3m (229) Pm3m (221) Fm3m (225) F43m (216) Fd3m (227)
Fibrifold 8o:2 4:2 2:2 1o:2 2+:2
Coxeter group {\tilde{C}}_3×2
[[4,3,4]]
=[4[3[4]]]
CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.png = CDel branch c1.pngCDel 3ab.pngCDel branch c1.png
{\tilde{C}}_3
[4,3,4]
=[2[3[4]]]
CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node.png = CDel branch c1-2.pngCDel 3ab.pngCDel branch c2-1.png
{\tilde{B}}_3
[4,31,1]
=<[3[4]]>
CDel nodeab c1-2.pngCDel split2.pngCDel node c3.pngCDel 4.pngCDel node.png = CDel node c3.pngCDel split1.pngCDel nodeab c1-2.pngCDel split2.pngCDel node c3.png
{\tilde{A}}_3
[3[4]]
 
CDel node c3.pngCDel split1.pngCDel nodeab c1-2.pngCDel split2.pngCDel node c4.png
{\tilde{A}}_3×2
[[3[4]]]
=[[3[4]]]
CDel branch c1.pngCDel 3ab.pngCDel branch c2.png
Coxeter diagram CDel branch 11.pngCDel 4a4b.pngCDel nodes.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png CDel branch 11.pngCDel 3ab.pngCDel branch 11.png
truncated octahedra 1
Uniform polyhedron-43-t12.svg
1:1
Uniform polyhedron-43-t12.svg:Uniform polyhedron-43-t12.svg
2:1:1
Uniform polyhedron-43-t12.svg:Uniform polyhedron-43-t12.svg:Uniform polyhedron-33-t012.png
1:1:1:1
Uniform polyhedron-33-t012.png:Uniform polyhedron-33-t012.png:Uniform polyhedron-33-t012.png:Uniform polyhedron-33-t012.png
1:1
Uniform polyhedron-33-t012.png:Uniform polyhedron-33-t012.png
Vertex figure Bitruncated cubic honeycomb verf2.png 80px 80px 80px 80px
Vertex
figure
symmetry
[2+,4]
(order 8)
[2]
(order 4)
[ ]
(order 2)
[ ]+
(order 1)
[2]+
(order 2)
Image
Colored by
cell
100px Bitruncated Cubic Honeycomb.svg 100px 100px 100px

Projection by folding

The bitruncated cubic honeycomb can be orthogonally projected into the planar truncated square tiling by a geometric folding operation that maps two pairs of mirrors into each other. The projection of the bitruncated cubic honeycomb creating two offset copies of the truncated square tiling vertex arrangement of the plane:

Coxeter
group
{\tilde{A}}_3 {\tilde{C}}_2
Coxeter
diagram
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Graph 160px
Bitruncated cubic honeycomb
Uniform tiling 44-t012.png
Truncated square tiling

Alternated bitruncated cubic honeycomb

Alternated bitruncated cubic honeycomb
Type Uniform honeycomb
Schläfli symbol 2s{4,3,4}
Coxeter diagrams CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node.pngCDel 4.pngCDel node h.pngCDel split1.pngCDel nodes hh.png = CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png
CDel node h.pngCDel split1.pngCDel nodes hh.pngCDel split2.pngCDel node h.png = CDel node h0.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png
Cells tetrahedron
icosahedron
Vertex figure 80px
Coxeter group [4,3,4], {\tilde{C}}_3
Properties vertex-transitive

The alternated bitruncated cubic honeycomb or bisnub cubic honeycomb can be creating regular icosahedron from the truncated octahedra with irregular tetrahedral cells created in the gaps. There are three constructions from three related Coxeter diagrams: CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png, CDel node.pngCDel 4.pngCDel node h.pngCDel split1.pngCDel nodes hh.png, and CDel node h.pngCDel split1.pngCDel nodes hh.pngCDel split2.pngCDel node h.png. These have symmetry [4,3+,4], [4,(31,1)+] and [3[4]]+ respectively. The first and last symmetry can be doubled as [[4,3+,4]] and [[3[4]]]+.

This honeycomb is represented in the boron atoms of the α-rhombihedral crystal. The centers of the icosahedra are located at the fcc positions of the lattice.[3]

Five uniform colorings
Space group I3 (204) Pm3 (200) Fm3 (202) Fd3 (203) F23 (196)
Fibrifold 8−o 4 2 2o+ 1o
Coxeter group [[4,3+,4]] [4,3+,4] [4,(31,1)+] [[3[4]]]+ [3[4]]+
Coxeter diagram CDel branch hh.pngCDel 4a4b.pngCDel nodes.png CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel 4.pngCDel node h.pngCDel split1.pngCDel nodes hh.png CDel branch hh.pngCDel 3ab.pngCDel branch hh.png CDel node h.pngCDel split1.pngCDel nodes hh.pngCDel split2.pngCDel node h.png
Order double full half quarter
double
quarter

Cantellated cubic honeycomb

Cantellated cubic honeycomb
Type Uniform honeycomb
Schläfli symbol rr{4,3,4} or t0,2{4,3,4}
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
Cells rr{4,3} Uniform polyhedron-43-t02.png
r{4,3} Uniform polyhedron-43-t1.png
{4,3} Uniform polyhedron-43-t0.png
Vertex figure 75px
(Wedge)
Space group
Fibrifold notation
Pm3m (221)
4:2
Coxeter group [4,3,4], {\tilde{C}}_3
Dual quarter oblate octahedrille
Properties vertex-transitive

The cantellated cubic honeycomb or cantellated cubic cellulation is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of rhombicuboctahedra, cuboctahedra, and cubes in a ratio of 1:1:3.

John Horton Conway calls this honeycomb a 2-RCO-trille, and its dual quarter oblate octahedrille.

190px HC A5-A3-P2.png

Images

200px 200px
It is closely related to the perovskite structure, shown here with cubic symmetry, with atoms placed at the center of the cells of this honeycomb.

Symmetry

There is a second uniform colorings by reflectional symmetry of the Coxeter groups, the second seen with alternately colored rhombicuboctahedral cells.

Vertex uniform colorings by cell
Construction Truncated cubic honeycomb Bicantellated alternate cubic
Coxeter group [4,3,4], {\tilde{C}}_3
=<[4,31,1]>
[4,31,1], {\tilde{B}}_3
Space group Pm3m Fm3m
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png
Coloring 120px 120px
Vertex figure 120px 120px
Vertex
figure
symmetry
[ ]
order 2
[ ]+
order 1

Cantitruncated cubic honeycomb

Cantitruncated cubic honeycomb
Type Uniform honeycomb
Schläfli symbol tr{4,3,4} or t0,1,2{4,3,4}
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png = CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
Vertex figure 50px50px
(Irreg. tetrahedron)
Coxeter group [4,3,4], {\tilde{C}}_3
Space group
Fibrifold notation
Pm3m (221)
4:2
Dual triangular pyramidille
Properties vertex-transitive

The cantitruncated cubic honeycomb or cantitruncated cubic cellulation is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space, made up of truncated cuboctahedra, truncated octahedra, and cubes in a ratio of 1:1:3.

John Horton Conway calls this honeycomb a n-tCO-trille, and its dual triangular pyramidille.

190px HC A6-A4-P2.png

Images

Four cells exist around each vertex:

320px

Related polyhedra and honeycombs

It is related to a skew apeirohedron with vertex configuration 4.4.6.6, with the octagons and some of the squares removed. It can be seen as constructed by augmenting truncated cuboctahedral cells, or by augmenting alternated truncated octahedra and cubes.

Two views
Cantitruncated cubic honeycomb apeirohedron 4466.png Omnitruncated cubic honeycomb apeirohedron 4466.png

Symmetry

Cells can be shown in two different symmetries. The linear Coxeter diagram form can be drawn with one color for each cell type. The bifurcating diagram form can be drawn with two types (colors) of truncated cuboctahedron cells alternating.

Construction Cantitruncated cubic Omnitruncated alternate cubic
Coxeter group [4,3,4], {\tilde{C}}_3
=<[4,31,1]>
[4,31,1], {\tilde{B}}_3
Space group Pm3m (221) Fm3m (225)
Fibrifold 4:2 2:2
Coloring Cantitruncated Cubic Honeycomb.svg 80px
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png
Vertex figure 80px 80px
Vertex
figure
symmetry
[ ]
order 2
[ ]+
order 1

Alternated cantitruncated cubic honeycomb

Alternated cantitruncated cubic honeycomb
Type Convex honeycomb
Schläfli symbol sr{4,3,4}
sr{4,31,1}
Coxeter diagrams CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel split1.pngCDel nodes hh.png = CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png
Cells tetrahedron
pseudoicosahedron
snub cube
Vertex figure 80px
Coxeter group [4,31,1], {\tilde{B}}_3
Dual square quarter pyramidille
Properties vertex-transitive

The alternated cantitruncated cubic honeycomb or snub rectified cubic honeycomb contains three types of cells: snub cubes, icosahedra (snub tetrahedron), and tetrahedra. In addition the gaps created at the alternated vertices form tetrahedral cells.
Although it is not uniform, constructionally it can be given as Coxeter diagrams CDel node h.pngCDel 4.pngCDel node h.pngCDel split1.pngCDel nodes hh.png or CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png.

320px

Runcic cantitruncated cubic honeycomb

Runcic cantitruncated cubic honeycomb
Type Convex honeycomb
Schläfli symbol sr3{4,3,4}
Coxeter diagrams CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png
Cells rhombicuboctahedron
snub cube
cube
Vertex figure
Coxeter group [4,3,4], {\tilde{C}}_3
Dual
Properties vertex-transitive

The runcic cantitruncated cubic honeycomb or runcic cubic cellulation contains cells: snub cubes, rhombicuboctahedrons, and cubes. In addition the gaps created at the alternated vertices form an irregular cell.
Although it is not uniform, constructionally it can be given as Coxeter diagram CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png.


Runcitruncated cubic honeycomb

Runcitruncated cubic honeycomb
Type Uniform honeycomb
Schläfli symbol t0,1,3{4,3,4}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Cells rhombicuboctahedron
truncated cube
octagonal prism
cube
Vertex figure 80px
(Trapezoidal pyramid)
Coxeter group [4,3,4], {\tilde{C}}_3
Space group
Fibrifold notation
Pm3m (221)
4:2
Dual square quarter pyramidille
Properties vertex-transitive

The runcitruncated cubic honeycomb or runcitruncated cubic cellulation is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of rhombicuboctahedra, truncated cubes, octagonal prisms, and cubes in a ratio of 1:1:3:3.

Its name is derived from its Coxeter diagram, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png with three ringed nodes representing 3 active mirrors in the Wythoff construction from its relation to the regular cubic honeycomb.

John Horton Conway calls this honeycomb a 1-RCO-trille, and its dual square quarter pyramidille.

190px HC A5-A2-P2-Pr8.png Runcitruncated cubic honeycomb.jpg

A related uniform skew apeirohedron exists with the same vertex arrangement, but some of the square and all of the octagons removed. It can be seen as truncated tetrahedra and truncated cubes augmented together.

Skew polyhedron 34444.png

Omnitruncated cubic honeycomb

Omnitruncated cubic honeycomb
Type Uniform honeycomb
Schläfli symbol t0,1,2,3{4,3,4}
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Vertex figure 80px
Phyllic disphenoid
Space group
Fibrifold notation
Coxeter notation
Im3m (229)
8o:2
[[4,3,4]]
Coxeter group [4,3,4], {\tilde{C}}_3
Dual eighth pyramidille
Properties vertex-transitive

The omnitruncated cubic honeycomb or omnitruncated cubic cellulation is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of truncated cuboctahedra and octagonal prisms in a ratio of 1:3.

John Horton Conway calls this honeycomb a b-tCO-trille, and its dual eighth pyramidille.

190px 110px

Symmetry

Cells can be shown in two different symmetries. The Coxeter diagram form has two colors of truncated cuboctahedra and octahedral prisms. The symmetry can be doubled by relating the first and last branches of the Coxeter diagram, which can be shown with one color for all the truncated cuboctahedral and octahedral prism cells.

Two uniform colorings
Symmetry {\tilde{C}}_3, [4,3,4] {\tilde{C}}_3×2, [[4,3,4]]
Space group Pm3m (221) Im3m (229)
Fibrifold 4:2 8o:2
Coloring 150px Omnitruncated cubic honeycomb2.png
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel branch 11.pngCDel 4a4b.pngCDel nodes 11.png
Vertex figure 100px 100px

Related polyhedra

Two related uniform skew apeirohedron exist with the same vertex arrangement. The first has octagons removed, and vertex configuration 4.4.4.6. It can be seen as truncated cuboctahedra and octagonal prisms augmented together. The second can be seen as augmented octagonal prisms.

4.4.4.6
120px
4.8.4.8
120px
Omnitruncated cubic honeycomb apeirohedron 4446.png Skew polyhedron 4848.png

Alternated omnitruncated cubic honeycomb

Alternated omnitruncated cubic honeycomb
Type Uniform honeycomb
Schläfli symbol ht0,1,2,3{4,3,4}
Coxeter diagram CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
Cells snub cube
square antiprism
tetrahedron
Vertex figure 80px
Symmetry [[4,3,4]]+
Properties vertex-transitive

A alternated omnitruncated cubic honeycomb or full snub cubic honeycomb can be constructed by alternation of the omnitruncated cubic honeycomb, although it can not be made uniform, but it can be given Coxeter diagram: CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png and has symmetry [[4,3,4]]+. It makes snub cubes from the truncated cuboctahedra, square antiprisms from the octagonal prisms and with new tetrahedral cells created in the gaps.


Truncated square prismatic honeycomb

Truncated square prismatic honeycomb
Type Uniform honeycomb
Schläfli symbol t{4,4}×{∞} or t0,1,3{4,4,2,∞}
tr{4,4}×{∞} or t0,1,2,3{4,4,∞}
Coxeter-Dynkin diagram CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
Coxeter group [4,4,2,∞]
Dual Tetrakis square prismatic tiling
Properties vertex-transitive

The truncated square prismatic honeycomb or tomo-square prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of octagonal prisms and cubes in a ratio of 1:1.

Truncated square prismatic honeycomb.png

It is constructed from a truncated square tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.


Snub square prismatic honeycomb

Snub square prismatic honeycomb
Type Uniform honeycomb
Schläfli symbol s{4,4}×{∞}
sr{4,4}×{∞}
Coxeter-Dynkin diagram CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
Coxeter group [4+,4,2,∞]
[(4,4)+,2,∞]
Dual Cairo pentagonal prismatic honeycomb
Properties vertex-transitive

The snub square prismatic honeycomb or simo-square prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of cubes and triangular prisms in a ratio of 1:2.

Snub square prismatic honeycomb.png

It is constructed from a snub square tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.

See also

References

  1. For cross-referencing, they are given with list indices from Andreini (1-22), Williams(1-2,9-19), Johnson (11-19, 21-25, 31-34, 41-49, 51-52, 61-65), and Grünbaum(1-28).
  2. [1], A000029 6-1 cases, skipping one with zero marks
  3. Williams, 1979, p 199, Figure 5-38.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Architectonic and Catoptric tessellations, p 292-298, includes all the nonprismatic forms)
  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 p. 296, Table II: Regular honeycombs
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Branko Grünbaum, Uniform tilings of 3-space. Geombinatorics 4(1994), 49 - 56.
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [2]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
  • A. Andreini, Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative (On the regular and semiregular nets of polyhedra and on the corresponding correlative nets), Mem. Società Italiana della Scienze, Ser.3, 14 (1905) 75–129.
  • Richard Klitzing, 3D Euclidean Honeycombs, x4o3o4o - chon - O1
  • Uniform Honeycombs in 3-Space: 01-Chon